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Abstract: Background: Acute Mountain Sickness (AMS) is a syndrome caused by 

individuals who are unacclimatized at high altitudes, AMS can threaten health and 

decrease productivity. By predicting AMS risk, workers can take measures in advance to 

prevent AMS. The main objective of this study was to use machine learning techniques to 

develop an AMS risk prediction model. Methods: A retrospective cohort study was 

conducted to capture AMS monitor data for State Grid workers in the Tibet-Ali project 

from 1 January 2019 to 31 December 2020. The data was assigned to the training and test 

sets in 7:3. 10-fold cross-validation was used to improve generalization abilities. Four 

models including Random Forest (RF) were developed and compared. Area Under the 

Curve (AUC) and accuracy were used to measure the performance of models. Results: The 

cohort consisted of 10956 workers, 10438 (95.27%) were male, and the mean age was 

36.13 ± 10.49 years. The AMS incidence was 15.58% (n = 1707). The RF model was 

superior to others in predicting AMS risk. In the test set, the accuracy was 80.32%. After 

parameter optimization of all models, the RF model still outperformed others, with the best 

AUC and accuracy were 0.76 and 78.12% ± 7.21%, respectively. Twelve features 

including demographics, clinical, and altitude were included in the RF model. 

Conclusions: This study aimed to develop a machine learning-based model for predicting 

AMS risk among workers at high altitudes. The RF model was found to be the best 

performer among the four models, based on 12 features known before workers entered 

plateaus. This model can be an effective tool for estimating AMS risk and guiding 

decisions regarding AMS primary prevention. 
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Introduction 

Acute Mountain Sickness (AMS) is a nonspecific syndrome that usually occurs in unacclimatized 

individuals at altitudes above 2500 m (Luks et al., 2017). Patients with AMS may experience 

headaches, fatigue, and other possible symptoms (Garrido et al., 2021). If the symptoms are ignored, 

AMS can affect the brain and lungs, causing High Altitude Cerebral Edema (HACE) or High-Altitude 

Pulmonary Edema (HAPE), which are life-threatening diseases (Li et al., 2018). According to 

statistics, more than 25% of people who arrived at altitudes above 2500 m have suffered AMS, while 

the AMS prevalence was higher than 50% for those who arrived at altitudes above 6000 m (Jin, 

2017). As the number of people traveling or working at high altitudes increases (Luo et al., 2013), it 

will bring unprecedented challenges to AMS prevention. Many measures have been proven to prevent 
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AMS effectively, such as high-altitude acclimatization(Imray et al., 2010), taking AMS preventive 

medicines(Ried et al., 1994), and avoiding drinking alcohol(Luo et al., 2013). Acclimatization is the 

most effective preventive measure, if individuals want to arrive at high altitudes, they should spend 

time acclimatizing at moderate altitudes and avoiding reaching high altitudes directly(Beidleman et 

al., 2009). Predicting AMS risk is also an important preventive measure to help people know their 

AMS risk and take appropriate preventive measures in advance(Luks et al., 2017). Some studies have 

developed AMS prediction and evaluation tools, such as the Lake Louise Questionnaire(Roach et al., 

2018) and the Acute Mountain Sickness-Cerebral score(Meier et al., 2017). However, these tools are 

mostly used for research purposes rather than clinical practice(Ahluwalia and Underwood, 2022). 

Therefore, it is urgent to develop an AMS risk prediction tool that can be used for clinical practice. 

Machine Learning (ML) techniques have shown considerable promise in developing prediction 

models for clinical practice(Habehh and Gohel, 2021). Compared with traditional statistical 

algorithms, ML algorithms can significantly improve prediction accuracy(Zhou et al., 2021). Many 

researchers have developed AMS risk prediction models using ML algorithms. Yang et al. developed 

a Support Vector Machine Recursive Feature Elimination (SVM-RFE) using 10 gene features with 

significant AMS predictive ability from 21 subjects to predict severe AMS. The result showed that the 

SVM-RFE model performed well in the validation set with the Area Under the Curve (AUC) value 

reaching 0.626 (Yang et al., 2023). Another study utilized physiological and environmental features 

from 32 participants to develop 25 ML models for AMS prediction including Weighted KNN, Bagged 

Trees, Cubic SVM, and Fine Tree. Their results showed that Bagged Trees had the best performance 

with sensitivity, specificity, accuracy, and AUC of 0.999, 0.994, 0.998, and 1, respectively(Wei et al., 

2022). The successes of current studies suggested the possibility of using ML techniques to develop 

AMS risk prediction models. However, current studies still had some limitations. First and foremost, 

most of the study population was under strictly controlled experimental conditions, which did not 

reflect real-world situations. Other limitations included the small sample sizes, the parameters of 

features were hard to obtain, and researchers paid less attention to workers. 

Workers are one of the main groups going to plateau areas. Although companies provided workers 

with AMS preventive measures such as acclimatization training and preventive medicines. Wu et al. 

found that the AMS incidence among 14050 railway workers working in plateau areas still reached 

51%(Wu et al., 2007). Another study of 11182 plateau workers showed that the AMS incidence was 

56%(Wu et al., 2012). These suggested that workers were at high risk of AMS and needed to be 

provided with effective AMS risk prediction. As the largest power company in China, the work areas 

of the State Grid cover 88% of the land area of China, and the plateau region is an important work 

area of the State Grid. To ensure power supply in plateau areas, the State Grid conducted the Tibet-Ali 
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project. The project is the highest, longest, and most challenging power transmission project in the 

world. Workers who participated in the project needed to pass physical examinations and have high-

altitude acclimatization. More than 10000 workers have participated in the project. To diagnose and 

treat AMS timely, the State Grid conducted unified training for medical workers and set up 20 

medical stations to provide medical assistance to workers and keep physical examination, and AMS 

diagnosis records. These conditions enable researchers to obtain large-scale, high-quality, and real-

world-based AMS monitor data for the development of AMS risk prediction models. 

Based on the above reasons, we conducted a retrospective cohort study to capture the AMS monitor 

data for State Grid workers in the Tibet-Ali project. The primary objective of this study was to use the 

AMS monitor data and ML techniques to develop an AMS risk prediction models based on ML 

techniques. The features utilized in the model can be easily obtained before workers enter the high-

altitude work environment. Since several ML models have been developed in the medical field, each 

model has its strengths and work nature. All of these models will perform well if chosen 

appropriately(Uddin et al., 2019). Therefore, we developed four ML models: Random Forest (RF), 

Support Vector Machine (SVM), Logistic Regression (LR), and Extreme Gradient Boosting 

(XGBoost), and selected the model with the highest accuracy and AUC as the AMS risk prediction 

model.  

Materials and Methods 

Study Population 

A retrospective cohort study was conducted to capture AMS monitor data for State Grid workers in 

the Tibet-Ali project from 1 January 2019 to 31 December 2020. The project is the highest, longest, 

and most challenging 500 KV transmission project in the world, which represents the plateau work 

environment well. The inclusion criteria were (1) completed high-altitude acclimation training, (2) 

passed the physical examination, and (3) No key information (name, gender, ID number) missing. The 

exclusion criteria were (1) No record of high-altitude acclimation training, (2) Key information 

missing. Finally, a total of 10956 workers (1707 patients vs. 9249 healthy controls) met the inclusion 

criteria and participated in this study. 

Dataset Description and Data Acquisition 

The dataset contained demographic, altitude, and clinical information (12 features) about State Grid 

workers, and the AMS outcome (1 feature), which can be viewed as the dependent variable. The 

domicile altitude information was measured by ArcGIS software (version 10.8) and used the digital 

elevation model data released by the General Bathymetric Chart of the Oceans. The AMS outcome 
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and clinical information were measured by uniformly trained medical workers. For AMS, we defined 

it as workers who met the AMS diagnosis in GBZ 92-2008 “Diagnostic criteria of occupational high-

altitude disease”(Zhang, 2010) and confirmed by medical workers. Table 1 shows specific names, 

parameters, and acquisitions of features. 

Table 1: Specific name, parameter, and acquisition of feature 

Primary Feature Secondary Feature Parameter Acquisition 

Demographics 
Age year Self-reported 

Sex male/female Self-reported 

Altitude 
Domicile altitude meter DEM data 

Workplace altitude meter From the medical station 

Clinical 

Heart rate beats/min Finger clip pulse oximeter 

BMI* kg/m2 Based on height and weight 

Oxygen saturation % Finger clip pulse oximeter 

Blood pressure mmHg Blood pressure monitor 

Arrhythmias yes/no UCG** examination 

Heart murmurs yes/no UCG examination 

Dry and moist rales yes/no Auscultation 

Nutritional status excellent/good/average or 

below 

Physician judgment 

AMS AMS yes/no Physician judgment 

Note: * Body Mass Index (BMI), ** Ultrasonic Cardiogram (UCG) 

Feature selection and Data preprocessing 

In most cases, multi-feature models perform better than those with fewer features. But in clinical 

practice, having more features is not equal to having higher performance, because irrelevant features 

can mislead the models(Wang et al., 2021). Therefore, we adapted Variance Threshold, Chi-square, 

F-test, and Mutual Information to filter features. We removed features with variances of 0 and 

features that did not correlate with AMS outcome. Furthermore, to minimize the bias caused by 

variables that are measured at different scales and improve the performance of models. We used the 

StandardScaler function in the sklearn.preprocessing module to standardize the data and observe the 

performance of models before and after data standardization. 

Parameter optimization 

The generalization error is affected by the model structure (complexity). If the model is too complex 

or simple, the model will be overfitting or underfitting and result in a large generalization error(Mei 

and Montanari, 2022). Therefore, we optimized the key parameters to find the most suitable model 
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structure and avoided overfitting or underfitting. We used the learning curve and the GridSearchCV 

function in the scikit-learn module for parameter optimization. 

 

Training and evaluation of ML models 

To develop the best AMS risk prediction model, we developed four ML models: RF, SVM, LR, and 

XGBoost. We split the dataset into two parts (70% training and 30% test) and used the hold-out 

method to evaluate the performance of models. The models were trained on the training set and tested 

on the test set. In addition, the 10-fold cross-validation was also applied to evaluate the performance 

of these models to overcome overfitting and selection bias(Cawley and Talbot, 2010). We chose 

accuracy and AUC as performance evaluation metrics, which are common in medical prediction 

studies, to compare the performance of models. 

Statistical analysis 

The statistical analyses were performed in Python (version 3.8) and Stata (version 17.0). All ML 

models were built based on the scikit-learn module (version 0.23.2) of Python. Continuous variables 

were presented as means ± Standard Deviation (SD), and categorical variables were presented as 

count (percentages). To compare the group differences, continuous variables were used on the T-test, 

and categorical variables were used on the Chi-square test. We considered the results to be 

statistically significant when the two-sided P < 0.05. 

Ethical consideration 

The trial was approved by the Institutional Review Board of Peking University (IRB00001052-21066) 

and adhered to the principles of the Declaration of Helsinki. To protect the privacy and confidentiality 

of participants, we concealed the key information of all participants in the data presentation process. 

Results 

Participant Characteristics 

Of 10956 participants in this study, 10438 (95.27%) were male, and the mean age was 36.13 ± 10.49 

years. A total of 1707 (15.58%) participants were diagnosed with AMS of which 5 progressed to 

HAPE. Compared with health controls, the mean domicile altitude of AMS patients (1787.94 ± 

1005.86 vs. 1990.96 ± 916.18, P < 0.001) was lower, the mean workplace altitude of AMS patients 

(4654.38 ± 151.32 vs. 4510.76 ± 238.89, P < 0.001) was higher, and the mean oxygen saturation of 
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AMS patients (85.58 ± 5.02 vs. 86.85 ± 4.80, P < 0.001) was lower. Table 2 shows the characteristics 

of participants compared between health controls and AMS patients.  

 

Table 2: Characteristics of participant 

Characteristics Health Controls 

(n=9249) 

AMS Patients 

(n=1707) 

P value 

Gender, (%)   0.48 

male 8806 (95.21) 1632 (95.61)  

female 443 (4.79) 75 (4.39)  

Age, (y) 36.06 ± 10.53 36.50 ± 10.25 0.11 

Domicile altitude, (m) 1990.96 ± 916.18 1787.94 ± 1005.86 < 0.001 

Workplace altitude, (m) 4510.76 ± 238.89 4654.38 ± 151.32 < 0.001 

BMI, (kg/m2) 22.89 ± 2.29 22.73 ± 2.40 0.01 

Systolic blood pressure, (mmHg) 127.57 ± 11.85 129.09 ± 11.48 < 0.001 

Diastolic blood pressure, (mmHg) 80.85 ± 8.78 80.94 ± 8.69 0.71 

Oxygen saturation, (%) 86.85 ± 4.80 85.58 ± 5.02 < 0.001 

Heart rate, (beats/min) 86.60 ± 10.29 88.44 ± 11.04 < 0.001 

Dry rale   0.07 

yes 208 (2.25) 51 (2.99)  

no 9041 (97.75) 1656 (97.01)  

Moist rale   0.55 

yes 10 (0.11) 1 (0.06)  

no 9239 (99.89) 1706 (99.94)  

Heart murmurs   0.46 

yes 6 (0.06) 2 (0.12)  

no 9243 (99.94) 1705 (99.88)  

Arrhythmias   0.46 

yes 3 (0.03) 0 (0.00)  

no 9246 (99.97) 1707 (100.00)  

Nutritional status   < 0.001 

excellent 1704 (18.42) 238 (13.94)  

good 6987 (75.54) 1360 (79.67)  

average or below 558 (6.03) 109 (6.39)  
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Comparison of Decision Tree and Random Forest 

We first tested two models, Decision Tree (DT) and RF. The accuracy of the two models in the test 

set was 75.69% and 80.32% respectively. In 10-fold cross-validation, the accuracy of the RF model 

was stable between 70% to 80%, with a mean accuracy of 77.76% ± 8.34%, while the accuracy of the 

DT model was stable between 30% to 70%, with a mean accuracy of 62.07% ± 13.44%. The accuracy 

of the RF model was higher than that of the DT model in all rounds. Figure 1 shows the accuracy of 

two models in 10-fold cross-validation. 

Figure 1: The accuracy of RF and DT models in 10-fold cross-validation 

Effect of Feature Selection and Data Preprocessing on Model 

We used the RF model to test the effects of feature selection and data preprocessing on models. After 

filtering by Variance Threshold and Chi-square. The results showed that there were no irrelevant 

features. Then we used the F-test and Mutual Information to filter the features and standardize the 

data. In 10-fold cross-validation, the results showed that F-test, Mutual Information, and Data 

Standardization did not significantly affect the accuracy of the RF model. Given the complexity of 

model deployment, we chose raw data for subsequent model building and optimization. Table 3 

shows the effect of feature selection and data preprocessing on the accuracy of the RF model. 
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Table 3: The accuracy of the RF model after feature selection and data preprocessing 

Feature Selection and Data Preprocessing Accuracy (mean ± SD, %) 

Data Standardization 74.47% ± 8.46% 

Mutual Information 76.27% ± 9.36% 

Mutual Information and Data Standardization 76.23% ± 9.51% 

F-test 77.77% ± 7.64% 

F-test and Data Standardization 77.83% ± 7.21% 

Raw data 77.76% ± 8.34% 

Results of Parameter Optimization on Random Forest 

We optimized the key parameters of the RF model. The range of n_estimators was in 1~200 (step-size 

10), the range of max_depth was in 1~20 (step-size 1), the range of max_features was in 3~14 (step-

size 1), and the criterion parameter was tested by Gini and entropy. We found that the RF model 

showed the best performance when n_estimators = 101, max_depth = 11, max_features = 5, and 

criterion = “Gini”. The accuracy of the RF model was improved from 74.91% ± 2.33% before 

optimization to 78.12% ± 7.21% after optimization. Table 4 shows the accuracy of the RF model 

during parameter optimization. 

Table 4: The accuracy of the RF model during parameter optimization 

Parameter Accuracy (mean ± SD, %) 

Default values 74.91% ± 2.33% 

Default values, n_estimators =101 75.74% ± 2.71% 

Default values, n_estimators =101, max_depth =11 76.19% ± 1.92% 

Default values, n_estimators =101, max_depth =11, 

max_features = 5 

77.93% ± 2.59% 

n_estimators=101，max_depth=11，max_features= 

5，criterion="Gini" 

78.12% ± 7.21% 

Comparison of Random Forests with Other Models 

The RF model has been proven to perform well on our dataset. To develop the best AMS risk 

prediction model, we further tested the performance of three other models (LR, SVM, and XGBoost) 

on this dataset. In 10-fold cross-validation, the results showed that the RF and LR (L1 Regularization) 

models had the best performance, with the accuracy of 78.12% ± 7.21% and 78.01% ± 6.22% 

respectively, and the SVM (kernel = rbf) model had the lowest accuracy of 75.46% ± 5.99%. Table 5 

shows the accuracy of four ML models. 
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Table 5: The accuracy of four ML models 

Model Accuracy (mean ± SD, %) 

Random Forest 78.12% ± 7.21% 

Logistic Regression (L1 Regularization) 78.01% ± 6.22% 

Logistic Regression (L2 Regularization) 77.89% ± 6.03% 

Support Vector Machine (kernel=linear) 76.49% ± 5.39% 

Support Vector Machine (kernel=poly) 77.37% ± 6.74% 

Support Vector Machine (kernel= rbf) 75.46% ± 5.99% 

Support Vector Machine (kernel= sigmoid) 77.15% ± 4.82% 

XGBoost 76.47% ± 4.83% 

Note: All models were finished with the parameter optimizations 

We plotted the Receiver Operating Characteristic (ROC) curves of the four models on the test set. The 

results showed that the AUC of the RF model was the largest, reaching 0.76, while the AUC of three 

other models was lower than that of the RF model. Figure 2 shows the AUC of four ML models. 

 

Note: (a): RF, (b): LR, (c): SVM, (d): XGBoost 

Figure 2: The AUC of four ML models 

Clinical Application 

We chose the RF model as the AMS risk prediction model based on its best accuracy and AUC. Then 

we deployed the AMS risk prediction model into our AMS prediction system. The system can be 
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easily used for clinical practice. Workers only need to input 12 variables used for prediction to derive 

the AMS risk. The system stratified AMS risk into low, medium, high, and extremely high, and 

provides workers with corresponding preventive measures. Figure 3 shows the layout and predicted 

result of the system. 

 

Note: (a): layout, (b): the predicted result of high AMS risk 

Figure 3: The layout and predicted result of the system. 

Discussion 

It is important to predict AMS risk for plateau workers. Compared with people who did not know 

their AMS risk, the AMS incidence in people who knew their AMS risk was relatively low(Luo et al., 

2013). In this study, we developed AMS risk prediction models using four ML algorithms combining 

twelve demographics, clinical, and altitude features. We found that the RF model had the best 

performance with accuracy and AUC of 78.12% ± 7.21%, and 0.76, respectively. Therefore, it is 
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reasonable to believe that our AMS risk prediction model is robust and reliable. We further developed 

an AMS risk prediction system based on the AMS risk prediction model that can be used in clinical 

practice. The system can predict the AMS risk of plateau workers and provide them with 

corresponding preventive recommendations. 

Although traditional parameter regression models perform well when variables have a linear 

relationship with the outcome. The relationships between variables and outcomes are not just linear. 

Compared with traditional parametric regression models, ML models perform better when variables 

and outcomes are non-linear, and can predict more accurately(Afrash et al., 2023; Delen et al., 2005). 

Other advantages of ML models include avoiding overfitting and selection bias(Cawley and Talbot, 

2010). Several studies have been conducted to develop AMS risk prediction models using machine 

learning algorithms(Wei et al., 2022; Yang et al., 2023). However, the study population of previous 

studies was mostly under strict experimental simulation conditions, which could not reflect the real-

world situation. And limited to the experimental conditions and costs, the sample sizes were small. 

The main distinguish of our study was that the dataset we used for model development was derived 

from the real world, which can well reflect the plateau work environment and had a sufficient sample 

size.  

The main advantage of our study is the use of large-scale data from the Tibet-Ali project for 

modeling. Other advantages include the standardized diagnosis of AMS by uniformly trained medical 

workers, and the features used for the AMS risk prediction model are obtained easily. There are some 

limitations to this study. First, due to the self-limiting of AMS(Clarke, 2006), there may be missed 

cases, which may mislead the model. Second, due to the limitation of the dataset, the model did not 

include smoking(Vinnikov et al., 2015), anxiety(Boos et al., 2018), and other possible influencing 

factors. Third, we cannot perform external validation of the model due to the lack of high-quality 

datasets. 

For future studies, large-scale surveys should be organized to obtain more real-world-based AMS 

monitor data to improve the AMS risk prediction model, and a variety of external validations of the 

model should be conducted to verify its performance and stability. The AMS risk prediction system 

should be deployed in occupational hazard prevention applications and its effectiveness in clinical 

practice will be further tested. 

Conclusion 

In conclusion, this study utilized 12 accessible features to develop four ML models for predicting 

AMS risk. The RF model had the highest accuracy and AUC, performing better than others. This 
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model provided a reference for the construction of the AMS risk prediction system and helping 

medical workers guide decisions regarding AMS primary prevention. 
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