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Abstract: The rapid advancement in computer technology has supported flood 

forecasting, especially neural networks (NN), an application of data -driven models. 

However, predict ion reliability is compromised due to the data manipulation strategies and 

the length of the predictive horizon, especially the one-month horizon, which is ample for 

pre-flood management. Therefore, six (06) variants of recurrent neural networks (RNN) 

such as Long- and Short-Term Model (LSTM), Gated Recurrent Unit (GRU), Stacked 

Bidirect ional and Unidirectional LSTM (SBU-LSTM), SBU-GRU, Convolution Neural 

Network LSTM (CNN-LSTM) and CNN-GRU, were developed for the Kelani River 

Basin to validate their applicability in encouraging the accuracy of monthly flood 

forecasting by adapting a proper data manipulation technique. Initially, climatic, and 

physiographic factors of the basin, where the social and economic values are grievously 

interrupted by frequent floods, were gathered for the study. Then, the hydrological and 

data science cleansing strategies were adapted to enhance the quality of the data. Besides, 

a  Box-Cox transformation was implemented to redistribute the hydrological data into a 

Gaussian form to remove the significant deviation between higher and lower values. Next, 

grid analysis was conducted using statistical tools to quantify the performance, while the 

influence of data handling and model architecture was examined using uncertainty and 

sensitivity analysis. LSTM, GRU, SBU-LSTM, SBU-GRU, CNN-LSTM, and CNN-GRU 

expressed nearly 81%, 81%, 83%, 83%, 76%, and 62%, respectively, for the coefficient of 

determination (R2) which measures how well the forecasted values fit with the actual 

values. SBU-LSTM and SBU-GRU interpreted similar behavior to LSTM and GRU; 

however, the pattern was different in CNN-LSTM and CNN-GRU. Specifically, simple 

variants LSTM and GRU provided satisfactory results for the uncertainty and sensitivity 

analysis categories. 

Keywords: box-cox, data science, gated recurrent unit, long- and short- term model, 

statistical tools 

Introduction 

Flooding can lead to adverse impacts if development activities intercept the floodplain of a river 

system; further, the positive correlation between global warming and the frequent occurrence of 

extreme rainfall resulting in floods has led to several research endeavours. In addition, flood 

forecasting is elaborated with a hydrograph that illustrates the chronological behaviour of streamflow 

patterns. Commonly, climatic and physiographic factors of the catchment influence the hydrographs 
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in locating the peak flow magnitude and duration. Besides, the most significant achievement in flood 

forecasting is developing lengthy series with adequate accuracy (Subramanya, 2017). 

In the previous days, comprehensive physical models played a significant role in flood forecasting; 

however, the data-intensive manner and poor quality in handling non-linear problems have 

deteriorated the sustainability of those models. After, statistical models became popular in the field 

for developing a future pattern from their associative nature on historical data; nevertheless, these 

models face struggles to scale the complex data sets. Finally, flood forecasting studies have developed 

their interest in computer intelligence, where the performance is fast with complex data sets without 

acknowledging basic processes (Gude, Corns, & Long, 2020).  

Forecasting has been developed based on various principles, specifically adapting computer 

technology; for instance, process-driven and data-driven models are the improved versions of 

traditional models. Besides, the physical mechanism is crucial for process-driven models, while data-

driven models are developed based on machine learning techniques. Even though in recent days, data -

driven models have been chosen over process-driven models because the models can handle complex 

numerical analysis without acknowledging the primary mechanism. Moreover, machine learning is 

one of the popular applications of data-driven models, suitable for generating non-linear functions to 

develop relations among hydrological variables. Especially neural network (NN) models and deep 

machine learning have been in high demand for the application (Xu et al., 2021). In addition, NN 

models are built with timely information where the deep learning framework supports timely 

prediction on decomposed components and combines the outcomes to generate the final series (Sha et 

al., 2021).  

According to the NN model performance, highly deviating data enables problematic situations in high 

accuracy status. Thus, data preprocessing is considered one of the essential tasks before inserting the 

data for modelling. Besides, feature-wise normalization is proposed to handle the heterogeneous data 

by re-distributing and re-scaling (Ketkar & Moolayil, 2021). Data cleansing and handling are the most 

predominant processes supporting neural network models to learn the input easily and quickly with 

fewer computational losses. In previous studies, principal component analysis was proposed to reduce 

dimensionality while handling data (Chen et al., 2021). Moreover, Bayesian Regulation strategies 

were applied to control the probability of complex problems (Di Nunno & Granata, 2020). Thus, the 

combination of hydrological parameters influences the performance of the NN model, especially 

without proper data handling strategies (Sha et al., 2021).  

On the other hand, NN models adequately address the flood risk by locating the peak flow rates with 

sufficient temporal resolution (de la Fuente et al., 2019). Timely information gathering and real-time 

simulation can be expressed through the perfect flood forecasting models. Fundamentally, NN model 

architecture consists of input, hidden, and output layers; further, the activation function simulates the 

output from the input based on a complex nonlinear mapping function. Besides, hydrological 

forecasting problems are classified as short- and medium-term problems. However, the reliability of 

forecasting declines with the increment of the forecasting horizon (Sha et al., 2021).  

The application of recurrent neural networks (RNN) is famous for sequential data types; significantly, 

image recognition, text translation, and stock prediction have been successfully implemented with 

RNN. Besides, affine transformation and ease of user memory are the significant features of the RNN 
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models, which allow the model to predict future events based on present and past information. 

However, the interdependencies of time series data require learning the interconnectivity of multiple 

time scenarios. Therefore, hybrid models are introduced based on RNN variants to  enhance the 

forecasting quality (Wan et al., 2020). Researchers have paid more interest to RNN and its variants, 

such as LSTM and GRU, which effectively deal with nonlinear interaction among hydrological 

models. In addition, multiple input parameters handle the variants and accurately forecast the flood 

occurrence than the input with rainfall data alone (Zhang et al., 2021). Therefore, the performance of 

standalone and hybrid RNN models varies based on their learning abilities.  

Flood is a frequent natural disaster in Sri Lanka due to its climatological and geographical conditions; 

thus, flood forecasting is essential to mitigate economic and social vulnerabilities. Further, the 

frequency increased after 1925 and dramatically affected after 1989. Recently, the country has 

undergone flood circumstances every two to three years. The Kelani basin is in a wet zone, severely 

desecrated by the 2018 flood (Manawadu & Wijeratne, 2021). The river begins near the Adams Peak 

and Kirigalpotta region and reaches the Colombo outfall, nearly draining a 2,300 km2 region 

accommodating rich biodiversity and natural resources (Kottagoda & Abeysingha, 2017). Therefore, 

the present study considered Kelani Basin for flood forecasting.  

The present study targets to develop a monthly forecasting horizon based on 30-day previous input 

parameters. In addition, proper data manipulation strategies and sampling techniques are applied to 

encourage the learning abilities of RNN models. Consequently, the deficiencies and strengths of the 

standalone and hybrid models are investigated based on the performance in forecasting Kelani River 

streamflow. Besides, Long - Short Term Model (LSTM) and Gated Recurrent Unit (GRU) are the 

standalone models; at the same time Convolution (CNN)–LSTM, CNN–GRU, Stacked Bidirectional 

and Unidirectional based LSTM (SBU-LSTM), and SBU-GRU are the hybrid models considered for 

the study.    

Material and Methods 

Daily rainfall and evaporation data were gathered from the Meteorological Department of Sri Lanka, 

and daily streamflow data were collected from the Irrigation Department of Sri Lanka. On the other 

hand, wind speed, temperature, relative humidity, and solar irradiance were derived from NASA’s 

Power Data Access Viewer Website to represent the impactful climatic factor transpiration. The initial 

losses were represented using the soil wetness index, which was gathered from the same source. 

Hydrological cleansing methods were employed for rainfall data based on the streamflow-rainfall 

interaction. In addition, evaporation data was improved by applying data science techniques. The 

input sets were re-distributed as gaussian using box-cox transformation. Besides, scaling and 

normalization were implemented to control the computational losses.  

RNN-variants such as LSTM and GRU were involved in developing six NN models, including 

standalone and hybrid models. Python coding proceeded with Jupyter Notebook to compile, fit and 

test the Kelani Basin data. Besides, grid analysis was conducted with statistical tools such as 

determination of coefficient (R2), root mean square error (RMSE), mean absolute error (MAE), and 

flow duration curve error (FDC-Q) to rank the performance of models. In addition, uncertainty and 

sensitivity analysis were employed to verify the influence of model architecture, such as types of 

optimizers, the learning rate, and the input handling and sampling size.  
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A methodology flow chart is attached here in Figure 1 to represent the steps visually.   

Data Collection and Study Area  

Kelani River Basin is the primary drinking water source of Grater Colombo; in addition, the basin 

region accommodates industrial and business spots (Kottagoda & Abeysingha, 2017). Figure 2 

illustrates the Kelani Basin location and river network. The catchment region is identified with 

geographical (physiographical) and hydrological (climatological) features (Hussain et al., 2021). 

Hanwelle river gauge was chosen to collect the streamflow values for seven years from the 2008 

water year, while daily rainfall data were gathered for three stations: Hanwella, Pasyala, and 

Weweltalawa. Besides, daily evapotranspiration data were assembled for Colombo station for the 

same period. Other climatic factors such as wind speed, temperature, relative humidity, solar 

irradiance, and soil wetness index were gathered for Colombo with similar temporal resolution.     

 

 

Figure 1 Methodology Flowchart 
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Figure 2 Location Map of Kelani River Basin (DEM) 

Catchment analysis is the predominant process to extract significant information for hydrological 

function, where the shape of the catchment, land slope attributes, infiltration characteristics, soil 

moisture, and vegetation growth are extracted using the method (Vivekanandan, 2019). Besides, 

Google Earth Engine (GEE) provides a platform for geospatial analysis, where the cloud computing 

features support to derive the essential information (Nashwan et al., 2019). Soil Conservation Service 

Curve Number (SCS-CN) is employed to receive runoff coefficient series using rainfall, landcover 

and soil data (Jain et al., 2021). Normalized Difference Vegetation Index (NDVI), Normalized 

Difference Water Index (NDWI), and Modified Normalized Difference Water Index (MNDWI) are 

directly obtained from the Landsat data as time series (Ashok et al., 2021). Table 1 represents the data 

sources and resolution of data sets. 

Table  1: Data Type and Data Resolution 

Data Type Resolution Data Period Data Source 

Rainfall Daily Oct 2008 – Sep 2015 Department of Meteorology 

Streamflow Daily Oct 2008 – Sep 2015 Department of Irrigation 

Evaporation  Daily Oct 2008 – Sep 2015 Department of Meteorology 

Transpiration 

(Wind Speed, Temperature, 
Relative Humidity, Solar 
Irradiance) 

Daily Oct 2008 – Sep 2015 Power Data Access Viewer 
Website, NASA 

Initial Losses 

(Soil Wetness Index) 

Daily Oct 2008 – Sep 2015 Power Data Access Viewer 
Website, NASA 

Physiographic Data (NDVI, 
NDWI, MNDWI, and Runoff 
Coefficient) 

Daily  Oct 2008 – Sep 2015 Google Earth Engine  
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Data and Data Checking  

Data preprocessing was conducted to improve input quality, which includes missing data handling 

and correcting the heterogeneity. Hydrological and data science cleanings were employed to elevate 

the quality of input parameters.    

Data Preprocessing of Rainfall, Streamflow, and Initial Losses: Visual inspection was initially 

employed to verify the patterns of rainfall and streamflow at each station annually. In addition, annual 

water balance estimation was proposed to understand the deviation in data distribution. Besides, 

according to (Tang et al., 1996), the closest station patching method was involved to fill the missing 

values by capturing the trend of a single mass curve. Finally, based on (Subramanya, 2017), the 

double mass curves were developed to ensure the linearity of each station after filling in the missing 

values. 

 Data Preprocessing of Transpiration and Initial Losses: NASA POWER ACCESS platform is a 

beneficial source for the regions with unavailable ground weather stations. Most data in the portal are 

accurately identified, irrespective of the areas (Rodrigues & Braga, 2021). For further processing, the 

required data were gathered as time series sets for the Colombo region. 

Data Preprocessing of Physiographic Data: Heterogeneity problems corrupt the radar sets due to 

instrument configurations, resolution, and band combination. Thus, morphological filters and speckle 

noise elimination were employed to calibrate the data sets.   

Data Preprocessing with Data Science: Data division supports eliminating overfitting and ensuring 

forecasting ability, while data cleaning controls missing values and outliers (Jiang et al., 2021). Data 

imputation proceeded with data science techniques, especially for evaporation data. In addition, 

inappropriate data types were reorganized to support NN modelling.   

Data Preprocessing for NN Modelling: Well-organized TensorFlow library is utilized to run the 

Python coding in Jupyter Notebook, which facilitates text editing with annotation to break a long 

script into smaller portions. Forecasting problems are categorized as regression machine learning 

programs, where pre-processing is essential to control accuracy deficiencies (Ketkar & Moolayil, 

2021).  Therefore, Box-Cox transformation, a one-dimensional conversion technique, is widely 

proposed to enhance the Gaussian data distribution; however, the application is only viable for some 

cases (Blum et al., 2022). Besides, feature-based normalization is appreciable to control the 

computational losses in the numerical data sets, where the values are re-distributed between 0 and 1 

(Géron, 2019). The box-cox transformation and data-scaling were applied to ensure the learning 

capacity of machine learning techniques. In addition, recent hydrological data are assembled to 

generate batches and targets using a python generator, enhancing simulation reliability. Equation 1 

illustrates the Box-Cox transformation, while Equation 2 explains the feature-scaling technique.  

For λ ≠ 0,  =  ; For λ = 0, =   

 

Equation 1 

Normalized Value =   

Equation 2 
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Developing NN Models  

Model architecture is developed with optimizer Adam, loss function Root Mean Squared Error (RMSE), and  

monitoring metrics Mean Absolute Error (MAE) (Géron, 2019). Figure 3 represents the skeleton of 

the NN model, and Equation 3 explains the general formula behind NN modelling. In addition, 

consecutive windows without shuffles are allocated with input, target, and shift (Hassan & Hassan, 

2021). The split window function was arranged with two sets: a batch of 30-time step 16-features ad a 

batch of 30-time step 1-feature. Further, the entire set was divided into three groups: training, 

validation, and testing by 70%, 20%, and 10%, respectively.   

y' = f (WTX + b) 
y’: Predicted Values; X: Input Values; W: Weight Values; b: Bias Values;  
f: Activation Function  

Equation 3 

 

 

Figure 3 Skeleton of NN Model 

LSTM and GRU: RNN-variants such as LSTM and GRU were developed as standalone models for 

flood forecasting. The LSTM model was initially proposed to control the vanishing gradient issues by 

Hochreiter and Schmidhuber in 1997. In 2014, Chung and team introduced GRU to run the model 

cheaply with low symbolic power. In addition, the dropout function is applied to overcome the 

overfitting issues, initiated in 2015 by Yarin Gal (Ketkar & Moolayil, 2021). A Keras framework was 

generated with in-built modules of LSTM and GRU to develop the model architecture. Besides, the 

return sequence argument was allocated as True to generate output for each input state. 

CNN-LSTM and CNN-GRU: CNN-LSTM or CNN-GRU learns the temporal and spatial features of 

the sequential input sets, which integrates two standalone models, such as CNN and LSTM or CNN 
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and GRU. The process begins with CNN, which understands the spatial features of the input. 

Consequently, the gathered patterns are converted into one-dimensional elements to feed the LSTM 

unit (Shen & Lin, 2020). According to the model architecture, data sets were passed through the units 

after extracting the sequential features by inserting them into a Fully Connected Dense Layer (FCN). 

A Conv1D layer with a kernel size of five was proposed as the first layer. Then, LSTM or GRU layer 

with a return sequence was allocated, a dense layer with ReLu activation followed the previous layer, 

and the dense layer was proposed at the bottom.       

SBU-LSTM and SBU-GRU: The architecture obeys the feed-forward theories, where the previous unit 

of stacked LSTM/GRU feeds the following LSTM/GRU unit. BiLSTM/BiGRU captures the 

backward and forward dependencies of the data; thus, the model understands the spatial and temporal 

characteristics (Cui et al., 2020). A bidirectional layer with LSTM or GRU with a return state was 

proposed; consequently, deep LSTM or GRU was attached to form a fully connected layer to boost 

the model.   

Ranking the Model Performance  

Four statistical tools, such as Residual Mean Maximum (RM), Flow Duration Curve Behavioral Error 

(FDC-Q), Determination of Coefficient (R2), Mean Absolute Error (MAE), and Root Mean Square 

Error (RMSE), are considered for ranking the model performance (Jiang et al., 2021). Analytic 

Hierarchy Process (AHP) was proposed to identify the weights of decision-making factors. 

Consequently, grid analysis was applied to rank the performance, where higher rank values were 

assigned for the worst performance. Table 2 illustrates the importance of statistical tools and 

formulas.     

Table  2: Weightages of the Statistical Tools for Grid Analysis  

Equations Range Reason for Influence on Decision - Making Weights 

R2 = NSE  

= 1 -   

[0, 1] It is used to express the fitness of both observed 
and forecasted values, which is the appropriate 
statistical tool for the performance. Therefore, it 
was assigned a higher value. 

0.44 

RM = max | | 

 

[0, ∞) It measures the scattered deviation of predicted 
values from the observed values. Therefore, it was 
assigned the second highest value. 

0.22 

RFDC = 1 -   

 

[0, 1] This tool expresses the behavioral error of observed 
and forecasted FDC. FDC greatly explicates the 
catchment characteristics. Therefore, it was 
assigned a fair value. 

0.15 

MAE =  
[0, ∞) It was the monitoring metrics of the NN models. 

Therefore, it was assigned a low value. 
0.11 

RMSE =  
[0, ∞) It was the loss function considered for the model 

compiling and fitting. Therefore, it was considered 
the lowest value. 

0.09 
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Uncertainty and Sensitivity Analysis    

Uncertainty analysis is a perfect tool to investigate the reliability of NN forecasting models, where R2 

values are implemented to express the performance based on the core model performance. In addition, 

data-driven forecasting models deal with various uncertainty sources, such as input variables and 

sampling sizes (Shamshirband et al., 2019). Sensitivity analysis assesses the importance of model 

architecture, which contributes to the functionality of NN models. Similar to uncertainty analysis, the 

sensitivity analysis of the model is expressed as a fraction of the core model performance using R2 

values (Song et al., 2020). Thus, learning rates, optimizer types, input parameters, and lead time 

sampling were considered to express the uncertainty and sensitivity analysis. Equation 4 illustrates the 

way to compute the scaled values. Table 3 represents the interpretation of scaled values regarding 

model performance. And Table 4 describes the uncertainty and sensitivity parameters.  

  
Equation 4 

 

Table 1 Scaled Values and the Interpretations 

Scaled Values (x) Decision Based on Values 

X < 1 The newly developed model performs worse than the core model 

X = 1 The newly developed model performs equal to the core model 

X > 1 The newly developed model performs better than the core model 

 

Table  4: Uncertainty and Sensitivity Parameters 

Sensitivity 
Parameters 

Model 
Characteristics 

Description 

Learning Rate 0.001 The learning rate influences the time length of 
convergence. For instance, a high rate 
contributes to fast convergence, while a low rate 
provides slow convergence. 

0.1 

0.01 

0.0001 

Optimizers Adam It combines the momentum and RMSProp, 
which keeps track of an exponentially decaying 
average of past squared gradients. 

Nadam Adam optimization and Nesterove trick produce 
this optimizer. Thus, it is faster converging than 
Adam. 

SGD It is a momentum optimizer that considers the 
previous gradients at each iteration. 

RMSProp It fixes the issue related to fast convergence 
without reaching a global optimum. 

Input Climatic & 
Physiographic 

Dimensionality reduction is the way to control 
the complexity of forecasting. 

Climatic only 
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Physiographic 
only 

Lead Time Span 30 Days Lead time and span length are significant in 
assessing the model performance. 15 Days 

45 Days 

Results and Discussion  

Both hydrographs and FDCs were plotted for 2015 streamflow values, where R2 and FDC-Q 

explicated the forecasting quality. Figure 4 to Figure 15 illustrate the performance of flood forecasting 

models. Initially, the performance of RNN variants such as LSTM and GRU was inspected as 

standalone models. Consequently, the hybrid models incorporated by CNN and RNN models were 

examined for their prediction quality.  

 

Figure 4: Hydrograph for Kelani (LSTM) 

 

Figure 5: FDC for Kelani (LSTM) 

 

Figure 6: Hydrograph for Kelani (GRU) 
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Figure 7: Hydrograph for Kelani (GRU) 

 

Figure 8: Hydrograph for Kelani (CNN-LSTM) 

 

Figure 9: Hydrograph for Kelani (CNN-LSTM) 

 

Figure 10: Hydrograph for Kelani (CNN-GRU) 
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Figure 11: Hydrograph for Kelani (CNN-GRU) 

 

Figure 12: Hydrograph for Kelani (SBU-LSTM) 

 

Figure 13: Hydrograph for Kelani (SBU-LSTM) 

 

Figure 14 Hydrograph for Kelani (SBU-GRU) 
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Figure 15 Hydrograph for Kelani (SBU-GRU) 

According to the standalone models, the LSTM model perfectly forecasted intermediate and low flow 

rates. Besides, GRU predicted high, intermediate, and low streamflow values with adequate quality. 

The FDC-Q was identified as 0.98 for both models. The overall RM values were within the acceptable 

range of 0.24 and 0.40 for LSTM and GRU, respectively. Simultaneously, the linearity coefficient 

was 81% for both standalone models.  

Based on the CNN-based hybrid models, CNN-LSTM poorly predicted low flow rates; however, the 

model perfectly forecasted high flow rates. On the other hand, CNN-GRU explicated the opposite 

behavior in predicting streamflow values. Therefore, FDC-Q values were 0.99 for both models. The 

overall RM was 0.38 and 0.37 for CNN-LSTM and CNN-GRU, respectively. Besides, the linearity 

coefficient was 76% and 62% for CNN-LSTM and CNN-GRU, respectively.  

Ranking the Model Performance   

Both training and testing set results were considered to develop the grid analysis to rank the model 

performance, where the AHP analysis was developed to derive the weightage values. Table 5 

illustrates the performance of each model in every category.    

Table  5: Performance of NN Models for Statistical Tools 

NN Models LSTM GRU CNN-LSTM CNN-GRU SBU- LSTM SBU-GRU 

R2 Training 0.8987 0.8982 0.8556 0.8299 0.8827 0.8811 

Rank 1 2 5 6 3 4 

Testing  0.6915 0.7157 0.6791 0.3351 0.7482 0.7148 

Rank 4 2 5 6 1 3 

RM Training 0.2157 0.5212 0.5126 0.4058 0.4420 0.5093 

Rank 1 6 5 2 3 4 

Testing  0.2645 0.2780 0.2560 0.3374 0.2487 0.2565 

Rank 4 5 2 6 1 3 

MAE Training 0.0328 0.0356 0.0453 0.0481 0.0354 0.0388 

Rank 1 3 5 6 2 4 

Testing  0.0399 0.0409 0.0435 0.0609 0.0380 0.0398 

Rank 3 4 5 6 1 2 
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RMSE Training 0.0459 0.0537 0.0587 0.0637 0.0500 0.0548 

Rank 1 3 5 6 2 4 

Testing  0.0549 0.0555 0.0572 0.0806 0.0503 0.0535 

Rank 3 4 5 6 1 2 

Except for CNN-GRU, other models expressed a perfect linearity correlation between actual and 

predicted values, where the R2 was above 0.75. GRU explicated higher residual error among the 

models; however, the value was acceptable because it was lesser than 0.5. Besides, the LSTM model 

expressed a lower value; other models were identified with similar performance. All the models 

behaved outstandingly for MAE and RMSE, where the values were less than and equal to 0.05. Table 

6 expresses the grid analysis of the models.  

According to the grid analysis, SBU-LSTM and LSTM performed extraordinarily among the models. 

However, CNN-based models such as CNN-LSTM and CNN-GRU expressed poor performance 

among the other models. Besides, GRU and SBU-GRU explicated intermediate performance.   

Table  6: Grid Analysis of NN Models  

Weight and Tools LSTM GRU CNN-LSTM CNN-GRU SBU-LSTM SBU-GRU 

0.4 R2 2.5 2.0 5.0 6.0 2.0 3.5 

0.2 RM 2.5 5.5 3.5 4.0 2.0 3.5 

0.1 FDC-Q 6.0 5.0 1.0 2.0 3.0 3.0 

0.1 MAE 2.0 3.5 5.0 6.0 1.5 3.0 

0.1 RMSE 2.0 3.5 5.0 6.0 1.5 3.0 

Weighted Ranks 2.9 3.5 4.1 5.0 2.0 3.3 

Ranks 2 4 5 6 1 3 

Uncertainty and Sensitivity Analysis  

By adjusting the model architecture (learning rates, optimizers), lead time and input parameters, the 

newly prepared models were examined based on the core model performance; specifically, R2 was 

applied to perform the sensitivity analysis. Figure 16 illustrates the scaled values of models in each 

parameter.   

 

Figure 16: Uncertainty and Sensitivity Analysis of NN Models 
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Standalone models such as LSTM and GRU delivered reasonably good performance for all the 

sensitivity parameters, where the scale values were within 0.9 to 1.0. Besides, CNN-GRU expressed 

more extraordinary performance for semi-monthly and weekly spans than monthly ones. Thus, the 

performance based on span length was inconclusive; further, other models expounded inconclusive 

conclusions regarding the time span.  

Except for CNN-LSTM, other models were perfectly performed forecasting for the adjusted input 

parameters, where the value falls between 0.9 to 1.3. CNN-GRU and SBU-LSTM expressed worse 

performance for a learning rate of 0.01 than the core model. Moreover, except CNN-LSTM, other 

models delivered a better performance for the learning rate lesser than the core mode l one.   

Only SBU-LSTM and CNN-LSTM exposed poor performance for NAdam; except LSTM and GRU, 

none of the models expressed adequate performance for the models with SGD. Further, RMSProp 

supported the model performance of LSTM, GRU, and SBU-LSTM.     

Comparing the Present Models’ Performance with the Available Models  

The present study models were compared with the RNN-based models available in the literature. 

However, the type of input parameters and the forecasting horizon varied from the present study. 

Most of the available models performed more exceptionally than the present models; nevertheless, the 

present models adequately maintained the linearity correlation between observed and forecasted 

values.   

The LSTM model was available in the literature to forecast a 2-day period with daily streamflow from 

1995 to 2013 (Le et al., 2021). In addition, the GRU model in the literature offered an excellent 

performance than the GRU model of the present study. However, it predicted a one-day span using 

daily rainfall and runoff data for eight years from 2007 to 2014 (Wang et al., 2020). The models 

performed more outstandingly than the LSTM and GRU models available in the present study. 

However, the forecasting horizon of the present study was 30-day; further, the study was arranged to 

forecast streamflow by considering climatic and physiographic parameters.  

The stacked LSTM (STA-LSTM) was modelled to predict 6-hour streamflow using hourly flow rate 

and rainfall from 1981 to 2007 (Ding et al., 2020). On the other hand, the feed-forward LSTM (FF-

LSTM) forecasted 1 hour with daily streamflow and rainfall from 1980 to 2016 (Lin et al., 2021). 

SBU-LSTM and SBU-GRU in the present model expressed similar behavior to STA-LSTM and FF-

LSTM based on their model architecture. However, the prediction capacity was quietly better than the 

present models. By reducing the forecasting span to either 15-day or 7-day, the present study models 

expressed similar abilities like STA-LSTM and FF-LSTM.   

The CNN-LSTM model was available in the literature to forecast one-month streamflow with hourly 

streamflow data from 1996 to 2016 (Ghimire et al., 2021). The forecasting ability of CNN-based 
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models in the present study could have been better than the model available in the literature. Even 

adjusting the input parameters and period was never supported to enhance the performance of the 

present study models. Figure 17 illustrates the graphical representation of the model performances.   

 

Figure 17:Comparison of Present and Available NN Forecasting Models 

Conclusions and Recommendations   

The Box-Cox transformation supported the development of Gaussian distribution on the input set, 

where the extreme events were forced not to corrupt the computation. Further, the normalization 

encouraged computational effectiveness. Besides, sliding window sampling motivated the periodical 

chopping of hydrological data.  

The CNN-based models performed poorly than other models, especially since CNN-GRU was 

identified with a lower value than others. Besides, among the other two sets, GRU-based models 

expressed underperformance than LSTM-based models. Longer sequences are poorly processed with 

GRU due to the less memory capacity. Therefore, GRU poorly performed forecasting than LSTM. 

Most significantly, both standalone models explicated better performance than the CNN-based 

models.  

Hybrid models SBU-LSTM and SBU-GRU were designed with unidirectional and bidirectional units. 

Further, the model forecasting ability was similar to standalone models. Moreover, the stacked 

behavior of the NN represented the feed-forward nature. However, SBU-GRU explicated 

underperformance than SBU-LSTM.     

Limitations in the Present Study    

The GEE contributes to performing geospatial analysis using satellite products; however, the missing 

data handling is required for the platform (Shelestov et al., 2017). Therefore, in the present study, the 

excellency of the NN model supported data imputation. In addition, the cloud system provides limited 

training and validation samples in large-scale data collection. Therefore, GEE must be incorporated 
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with a management decision to ensure derived data quality (Zhao et al., 2021). There are no defined 

ways for input handling while modelling the NN; simultaneously, there is neither an empirical nor 

theoretical tool to select the best NN models (Andrea Sánchez-Sánchez et al., 2020). Therefore, the 

present study was allocated with grid and AHP analysis to rank the model performance.   

Recommendations for Future Studies     

The loss function was RMSE for the present study, which optimized the error propagation by 

comparing actual and predicted values. In future studies, the loss function must be replaced with R2 to 

check forecasting quality. Autocorrelation correlates with the interdisciplinary of errors, which is 

more applicable to the temporal nature of  error propagation (Sun et al., 2021). Therefore, a future 

study must be developed with an autocorrelation technique to control the scattering of forecasted 

values. Further, the present study elaborated on the integrated models of unidirectional and 

bidirectional RNN variants. However, no models were developed on bidirectional RNNs alone. 

Therefore, the bidirectional models must be comprehensively studied similarly in the upcoming 

studies.   
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