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Abstract: Dyadic data which is also called co-occurrence data (COD) contains co-

occurrences of objects where these objects are indexed and grouped into two finite sets. It 

is necessary to model dyadic data by applied mathematical tools because dyadic data 

analysis is interesting and important to many applications relating to indexed two-

dimensional data such as image processing and recommendation collaborative filtering. 

Fortunately, finite mixture model is a solid statistical model to learn and make inference on 

dyadic data because mixture model is built smoothly and reliably by expectation 

maximization (EM) algorithm which is suitable to inherent spareness of dyadic data. This 

research summarizes mixture models for dyadic data, in which there are three well-known 

models such as symmetric mixture model (SMM), asymmetric mixture model (AMM), and 

product-space mixture model (PMM) which are described by beautiful mathematical proofs 

and explanations derived from EM algorithm. Objects in traditional dyadic data are indexed 

as categories and so their potential real values are concerned because of potential 

applications and extensions of dyadic data analysis. For instance, when each co-occurrence 

in dyadic data is associated with a real value, there are many unaccomplished values because 

a lot of co-occurrences are inexistent. In the research, these unaccomplished values are 

estimated as mean (expectation) of random variable given partial probabilistic distributions 

inside dyadic mixture model. This estimation result is solid due to support of EM algorithm. 

Keywords: dyadic data, co-occurrence data, expectation maximization (EM) algorithm, 

mixture model. 

Introduction 

Suppose data has two parts such as hidden part X and observed part Y and we only know Y. A 

relationship between random variable X and random variable Y is specified by the joint probabilistic 

density function (PDF) denoted f(X, Y | Θ) where Θ is parameter. Given sample 𝒴 = {Y1, Y2,…, YN} 

whose all Yi (s) are mutually independent and identically distributed (iid), it is required to estimate Θ 

based on 𝒴 whereas X is unknown. Expectation maximization (EM) algorithm is applied to solve this 

problem when only 𝒴 is observed. EM has many iterations and each iteration has two steps such as 

expectation step (E-step) and maximization step (M-step). At some tth iteration, given current parameter 

Θ(t), the two steps are described as follows: 
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Table 1.1: E-step and M-step of EM algorithm. 

E-step: 

The expectation Q(Θ | Θ(t)) is determined based on current parameter Θ(t), according to equation 1.1 

(Nguyen, 2020, p. 50). 

𝑄(Θ|Θ(𝑡)) = ∑ ∫ 𝑓(𝑋|𝑌𝑖 , Θ(𝑡))log(𝑓(𝑋, 𝑌𝑖|Θ))d𝑋

𝑋

𝑁

𝑖=1

 (1.1) 

M-step: 

The next parameter Θ(t+1) is a maximizer of Q(Θ | Θ(t)) with subject to Θ. Note that Θ(t+1) will become 

current parameter at the next iteration (the (t+1)th iteration). 

EM algorithm will converge after some iterations, at that time we have the estimate Θ(t) = Θ(t+1) = Θ*. 

Note, the estimate Θ* is result of EM. The EM algorithm shown in Table 1.1 is also called general EM 

or GEM. 

Especially, the random variable X represents latent class or latent component of random variable Y. 

Suppose X is discrete and ranges in {1, 2,…, K}. As a convention, let k=X. Note, because all Yi (s) are 

iid, let random variable Y represent every Yi. The so-called probabilistic finite mixture model is 

represented by the PDF of Y, as follows: 

𝑓(𝑌|Θ) = ∑ 𝛼𝑘𝑓𝑘(𝑌|𝜃𝑘)

𝐾

𝑘=1

 (1.2) 

Where, 

Θ = (𝛼1, 𝛼2, … , 𝛼𝐾 , 𝜃1, 𝜃2, … , 𝜃𝐾)𝑇

∑ 𝛼𝑘

𝐾

𝑘=1

= 1
 

Note, the superscript “T” denotes transpose operator for vector and matrix. The Q(Θ | Θ(t)) is re-defined 

for finite mixture model as follows (Nguyen, 2020, p. 79): 

𝑄(Θ|Θ(𝑡)) = ∑ ∑ 𝑃(𝑘|𝑌𝑖 , Θ(𝑡))log(𝛼𝑘𝑓𝑘(𝑌𝑖|𝜃𝑘))

𝐾

𝑘=1

𝑁

𝑖=1

 (1.3) 

Where, 
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𝑃(𝑘|𝑌𝑖 , Θ(𝑡)) =
𝛼𝑘

(𝑡)
𝑓𝑘 (𝑌𝑖|𝜃𝑘

(𝑡)
)

∑ 𝛼𝑙
(𝑡)

𝑓𝑙 (𝑌𝑖|𝜃𝑙
(𝑡)

)𝐾
𝑙=1

 (1.4) 

An interesting application of finite mixture model is soft clustering. Traditional clustering methods 

assign a fixed cluster to every data point in sample, which means that every data point belongs exactly 

to one cluster. Soft clustering is more flexible when every data point belongs to more than one cluster 

and the degree of assignment is represented by a probability. It is easy to recognize that when mixture 

model is applied into soft clustering, latent class k represents a cluster. 

Every observation in ordinary sample is univariate or multivariate but there is a case that ordinary 

sample becomes dyadic sample related to two sets of objects, which causes some modifications of 

mixture model. Dyadic data which is also called co-occurrence data (COD) contains co-occurrent 

events of objects. It is necessary to obtain statistical models to represent dyadic data and fortunately, 

finite mixture model is the one. Recall that EM is applied to learn mixture model. The next section 

focuses on mixture model for dyadic data. 

Mixture models for dyadic data 

Given two finite sets 𝒳 = {x1, x2,…, xN) and 𝒴 = {y1, y2,…, yM) with note that xi (s) and yj (s) represent 

𝒳-objects and 𝒴-objects, respectively; exactly, they are names of objects. The numbers of 𝒳-objects 

and 𝒴-objects are |𝒳|=N and |𝒴|=M, respectively. For example, in information retrieval, xi (s) are 

documents and yj (s) are keywords. Hence, xi and yj are not evaluated as numbers. An observational 

pair (xi, yj) ∈ 𝒳 × 𝒴 is called a co-occurrence of xi and yj. Dyadic data or COD 𝒮 contains these co-

occurrences with note that a co-occurrence (xi, yj) can exist more than one time. So, each co-occurrence 

(xi, yj) is indexed by an index r. As a result, each co-occurrence is denoted by the triple (xi, yj, r) and we 

have (Hofmann & Puzicha, 1998, p. 1): 

𝒮 = {(𝑥𝑖, 𝑦𝑗, 𝑟): 1 ≤ 𝑟 ≤ |𝒮|} (2.1) 

Where, 

𝑥𝑖 ∈ 𝒳 = {𝑥1, 𝑥2, … , 𝑥|𝒳|}

𝑦𝑗 ∈ 𝒴 = {𝑦1, 𝑦2, … , 𝑦|𝒴|}
 

Of course, the size of 𝒮 is |𝒮|. As a convention, xi(r) and yj(r) indicate that 𝒳-object and 𝒴-object at 

the rth co-occurrence are xi and yj, respectively. Thus, the triplet (xi, yj, r) can be denoted as (xi(r), yj(r), 

r). For example, suppose 𝒳 = {x1, x2, x3) and 𝒴 = {y1, y2), and dyadic data of 4 co-occurrences, 𝒮 = 

{(x1, y1, 1), (x1, y1, 2), (x1, y2, 3), (x1, y1, 4)}, we observe that x1 and y1 occur together three times at r=1, 

r=2, and r=4 where as x1 and y2 occur together one time at r=3. In the first co-occurrence (x1, y1, 1), the 

notation x1(1) indicate that the 𝒳-object at this co-occurrence is x1. In the third co-occurrence (x1, y2, 

3), the notation y2(3) indicate that the 𝒴-object at this co-occurrence is y2. 
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If each co-occurrence of xi and yj is associated with a value z (Hofmann, Puzicha, & Jordan, Learning 

from Dyadic Data, 1998, p. 1), the triple (xi, yj, r) becomes the quadruplet (xi, yj, z, r) which is called 

valued co-occurrence of xi and yj. The value z is called associative value or co-occurrent value. If z is 

value of a variable Z then, Z is called associative variable or co-occurrent variable. As a result, the 

sample 𝒮  is called valued dyadic data or valued COD. Note, Z can be univariate or multivariate 

(vector). 

𝒮 = {(𝑥𝑖, 𝑦𝑗, 𝑍, 𝑟): 1 ≤ 𝑟 ≤ |𝒮|} (2.2) 

Where, 

𝑥𝑖 ∈ 𝒳 = {𝑥1, 𝑥2, … , 𝑥|𝒳|}

𝑦𝑗 ∈ 𝒴 = {𝑦1, 𝑦2, … , 𝑦|𝒴|}
 

As a convention, Z(r) or z(r) indicates that the associative value at rth co-occurrence is Z=z. Thus, the 

quadruplet (xi, yj, Z, r) can be denoted as (xi(r), yj(r), Z(r), r). For example, suppose 𝒳 = {x1, x2, x3) and 

𝒴 = {y1, y2), and dyadic sample of 4 co-occurrences, 𝒮 = {(x1, y1, 6, 1), (x1, y1, 8, 2), (x1, y2, 7, 3), (x1, 

y1, 9, 4)}, we observe that x1 and y1 occur together three times at r=1, r=2, and r=4 where as x1 and y2 

occur together one time at r=3. Moreover, at r=1, r=2, r=3, and r=4, associative values are Z(1)=6, 

Z(2)=7, Z(3)=8, and Z(4)=9, respectively. Valued dyadic data is special case of dyadic data. As a 

convention, dyadic data is default if there is no additional information. 

Given fixed xk, let 𝒮𝑥𝑘
 be the 𝒳 -partitioned subset of 𝒮  which contains co-occurrences whose 𝒳 -

objects are fixed at xk (Hofmann & Puzicha, Statistical Models for Co-occurrence Data, 1998, p. 1). 

Note, 𝒮𝑥𝑘
 can be empty. The size of 𝒮𝑥𝑘

 is |𝒮𝑥𝑘
|. 

𝒮𝑥𝑘
= {(𝑥𝑖, 𝑦𝑗 , 𝑧, 𝑟): 𝑥𝑖 = 𝑥𝑘} (2.3) 

Dyadic data 𝒮 is partitioned into |𝒳| subsets 𝒮𝑥𝑘
. 

𝒮 = ⋃ 𝒮𝑥𝑘

|𝒳|

𝑘=1

∀𝑖 ≠ 𝑗, 𝒮𝑥𝑖
∩ 𝒮𝑥𝑗

= ∅

 

Given fixed yl, let 𝒮𝑦𝑙
 be the 𝒴-partitioned subset of 𝒮 which contains co-occurrences whose 𝒴-objects 

are fixed at yl. Note, 𝒮𝑦𝑙
 can be empty. The size of 𝒮𝑦𝑙

 is |𝒮𝑦𝑙
|. 

𝒮𝑦𝑙
= {(𝑥𝑖, 𝑦𝑗, 𝑧, 𝑟): 𝑦𝑗 = 𝑦𝑙} (2.4) 

Dyadic data 𝒮 is partitioned into |𝒴| subsets 𝒮𝑦𝑙
. 
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𝒮 = ⋃ 𝒮𝑦𝑙

|𝒴|

𝑙=1

∀𝑖 ≠ 𝑗, 𝒮𝑦𝑖
∩ 𝒮𝑦𝑗

= ∅

 

Given fixed xk and fixed yl, let 𝒮𝑥𝑘𝑦𝑙
 be the subset of the 𝒮 which contains co-occurrences whose 𝒳-

objects and 𝒴-objects are fixed at xk and yl. Note, 𝒮𝑥𝑘𝑦𝑙
 can be empty. The size of 𝒮𝑥𝑘𝑦𝑙

 is |𝒮𝑥𝑘𝑦𝑙
|. 

𝒮𝑥𝑘𝑦𝑙
= {(𝑥𝑖, 𝑦𝑗 , 𝑧, 𝑟): 𝑥𝑖 = 𝑥𝑘 , 𝑦𝑗 = 𝑦𝑙} (2.5) 

Let n(xi) and n(yj) denote the number of xi and the number of yj, respectively. 

𝑛(𝑥𝑖) = |𝒮𝑥𝑖
|

𝑛(𝑦𝑗) = |𝒮𝑦𝑗
|
 (2.6) 

Let n(xi, yj) denote the number of co-occurrences (xi, yj). 

𝑛(𝑥𝑖, 𝑦𝑗) = |𝒮𝑥𝑖𝑦𝑗
| (2.7) 

Let n(xi|yj) and n(yj|xi) denote the frequency of xi given yj and the frequency of yj given xi, respectively. 

𝑛(𝑥𝑖|𝑦𝑗) =
𝑛(𝑥𝑖, 𝑦𝑗)

𝑛(𝑦𝑗)

𝑛(𝑦𝑗|𝑥𝑖) =
𝑛(𝑥𝑖, 𝑦𝑗)

𝑛(𝑥𝑖)

 (2.8) 

For example, suppose 𝒳 = {x1, x2, x3) and 𝒴 = {y1, y2), and dyadic data of 4 co-occurrences, 𝒮 = {(x1, 

y1, 1), (x1, y1, 2), (x1, y2, 3), (x1, y1, 4)}, we have 𝒮𝑥1
 = {(x1, y1, 1), (x1, y1, 2), (x1, y2, 3), (x1, y1, 4)}, 𝒮𝑥2

 

= 𝒮𝑥3
 = Ø, 𝒮𝑦1

 = {(x1, y1, 1), (x1, y1, 2), (x1, y1, 4)}, 𝒮𝑦2
 = {(x1, y2, 3)}, 𝒮𝑥1𝑦1

 = = {(x1, y1, 1), (x1, y1, 2), 

(x1, y1, 4)}, 𝒮𝑥1𝑦2
 = {(x1, y2, 3)}, 𝒮𝑥2𝑦1

 = 𝒮𝑥2𝑦2
 = 𝒮𝑥3𝑦1

 = 𝒮𝑥3𝑦2
 = Ø, n(x1) = 1, n(x2) = n(x3) = 0, n(y1) = 

3, n(y2) = 1, n(x1, y1) = 3, n(x1, y2) = 1, n(x2, y1) = n(x2, y2) = n(x3, y1) = n(x3, y2) = 0, n(x1 | y1) = 1, n(x1 | 

y2) = 1, n(x2 | y1) = n(x2 | y2) = n(x3 | y1) = n(x3 | y2) = 0, n(y1 | x1) = 3/4, n(y2 | x1) = 1/4. 

Suppose each co-occurrence (xi, yj) belongs to a latent variable C and C has K values ck (s). These values 

ck (s) are called classes or aspects and thus, mixture model for dyadic data is also called aspect model 

or latent class model which aims to discover the latent variable C. Without loss of generality, let ck = k 

where k = 1, 2,…, K. The random variable C has discrete distribution such that every value has an 

associated probability αk. Of course, there are K probabilities αk (s). There are three kinds of dyadic 

mixture model for dyadic data such as symmetric mixture model (SMM), asymmetric mixture model 

(AMM), and product-space mixture model (PMM). This section only explains these models when they 
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were introduced by Hofmann and Puzicha (Hofmann & Puzicha, Statistical Models for Co-occurrence 

Data, 1998). 

The mixture model of dyadic data is called symmetric mixture model (SMM) if αk (s) are independent 

from both xi and yj. SMM is defined as follows (Hofmann & Puzicha, Statistical Models for Co-

occurrence Data, 1998, p. 2): 

𝑃(𝑥𝑖, 𝑦𝑗|Θ) = ∑ 𝛼𝑘𝑃(𝑥𝑖, 𝑦𝑗|𝑘)

𝐾

𝑘=1

= ∑ 𝛼𝑘𝑝𝑖|𝑘𝑞𝑗|𝑘

𝐾

𝑘=1

 (2.9) 

Where αk is the probability of aspect k. Note, P(.) denote probability. 

𝛼𝑘 = 𝑃(𝑘) 

The 𝑝𝑖|𝑘 is the probability of xi given aspect k. 

𝑝𝑖|𝑘 = 𝑃(𝑥𝑖|𝑘) 

The 𝑞𝑗|𝑘 is the probability of yj given aspect k. 

𝑞𝑗|𝑘 = 𝑃(𝑦𝑗|𝑘) 

This implies that xi and yj are mutually independent in SMM. 

𝑃(𝑥𝑖, 𝑦𝑗|𝑘) = 𝑃(𝑥𝑖|𝑘)𝑃(𝑦𝑗|𝑘) 

The joint probability of xi, yj, and k is: 

𝑃(𝑥𝑖 , 𝑦𝑗, 𝑘) = 𝑃(𝑘)𝑃(𝑥𝑖, 𝑦𝑗|𝑘) = 𝛼𝑘𝑃(𝑥𝑖|𝑘)𝑃(𝑦𝑗|𝑘) = 𝛼𝑘𝑝𝑖|𝑘𝑞𝑗|𝑘 

The parameter of SMM is Θ = (αk, pi|k, qj|k)
T in which there are K(|𝒳| + |𝒴| + 1) partial parameters αk, 

pi|k, and qj|k. Note, 

∑ 𝛼𝑘

𝐾

𝑘=1

= 1, ∑ 𝑝𝑖|𝑘

|𝒳|

𝑖=1

= 1, ∑ 𝑞𝑗|𝑘

|𝒴|

𝑗=1

= 1 

By applying GEM, given dyadic sample 𝒮, at the tth iteration of GEM, given current parameter Θ(t) = 

(αk
(t), pi|k

(t), qj|k
(t))T, the conditional expectation Q(Θ|Θ(t)) is: 
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𝑄(Θ|Θ(𝑡)) = ∑ ∑ 𝑃(𝑘|𝑥𝑖(𝑟), 𝑦𝑗(𝑟), Θ(𝑡))log(𝛼𝑘𝑝𝑖|𝑘𝑞𝑗|𝑘)

𝐾

𝑘=1

|𝒮|

𝑟=1

= ∑ ∑ 𝑛(𝑥𝑖 , 𝑦𝑗) ∑ 𝑃(𝑘|𝑥𝑖, 𝑦𝑗, Θ(𝑡)) (log(𝛼𝑘) + log(𝑝𝑖|𝑘)

𝐾

𝑘=1

|𝒴|

𝑗=1

|𝒳|

𝑖=1

+ log(𝑞𝑗|𝑘)) 

(2.10) 

Where, 

𝑃(𝑘|𝑥𝑖, 𝑦𝑗 , Θ(𝑡)) =
𝛼𝑘

(𝑡)
𝑝𝑖|𝑘

(𝑡)
𝑞𝑗|𝑘

(𝑡)

∑ 𝛼𝑙
(𝑡)

𝑝𝑖|𝑙
(𝑡)

𝑞𝑗|𝑙
(𝑡)𝐾

𝑙=1

 (2.11) 

Note, n(xi, yj) is the number of co-occurrences (xi, yj) in 𝒮, which is specified by equation 2.7. Please 

refer to equation 1.4 to comprehend equation 2.11. Because there are three constraints 

∑ 𝛼𝑘

𝐾

𝑘=1

= 1, ∑ 𝑝𝑖|𝑘

|𝒳|

𝑖=1

= 1, ∑ 𝑞𝑗|𝑘

|𝒴|

𝑗=1

= 1 

We use Lagrange duality method to maximize Q(Θ|Θ(t)). The Lagrange function la(Θ, λ | Θ(t)) is sum 

of Q(Θ|Θ(t)) and these constraints, as follows: 

𝑙𝑎(Θ, λ|Θ(𝑡)) = 𝑄(Θ|Θ(𝑡)) + 𝜆1 (1 − ∑ 𝛼𝑘

𝐾

𝑘=1

) + 𝜆2 (1 − ∑ 𝑝𝑖|𝑘

|𝒳|

𝑖=1

) + 𝜆3 (1 − ∑ 𝑞𝑗|𝑘

|𝒴|

𝑗=1

)

= ∑ ∑ 𝑛(𝑥𝑖 , 𝑦𝑗) ∑ 𝑃(𝑘|𝑥𝑖, 𝑦𝑗 , Θ(𝑡)) (log(𝛼𝑘) + log(𝑝𝑖|𝑘) + log(𝑞𝑗|𝑘))

𝐾

𝑘=1

|𝒴|

𝑗=1

|𝒳|

𝑖=1

+ 𝜆1 (1 − ∑ 𝛼𝑘

𝐾

𝑘=1

) + 𝜆2 (1 − ∑ 𝑝𝑖|𝑘

|𝒳|

𝑖=1

) + 𝜆3 (1 − ∑ 𝑞𝑗|𝑘

|𝒴|

𝑗=1

) 

Note, λ = (λ1, λ2, λ3)
T where λ1≥0, λ2≥0, and λ3≥0 are called Lagrange multipliers. Of course, la(Θ, λ | 

Θ(t)) is function of Θ and λ. The next parameters Θ(t+1) that maximizes Q(Θ|Θ(t)) at M-step of some tth 

iteration is solution of the equation formed by setting the first-order partial derivatives of Lagrange 

function regarding Θ and λ to be zero. 

The first-order partial derivative of Lagrange function regarding αk is: 

𝜕𝑙𝑎(Θ, λ|Θ(𝑡))

𝜕𝛼𝑘
= ∑ ∑ 𝑛(𝑥𝑖, 𝑦𝑗)

1

𝛼𝑘
𝑃(𝑘|𝑥𝑖 , 𝑦𝑗, Θ(𝑡))

|𝒴|

𝑗=1

|𝒳|

𝑖=1

− 𝜆1 

Setting this partial derivative to be zero, we obtain: 
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∑ ∑ 𝑛(𝑥𝑖, 𝑦𝑗)𝑃(𝑘|𝑥𝑖, 𝑦𝑗 , Θ(𝑡))

|𝒴|

𝑗=1

|𝒳|

𝑖=1

− 𝛼𝑘𝜆1 = 0 

Summing the equation above over K aspects {1, 2,…, K}, we have: 

∑ ∑ 𝑛(𝑥𝑖, 𝑦𝑗) ∑ 𝑃(𝑘|𝑥𝑖, 𝑦𝑗 , Θ(𝑡))

𝐾

𝑘=1

|𝒴|

𝑗=1

|𝒳|

𝑖=1

− 𝜆1 ∑ 𝛼𝑘

𝐾

𝑘=1

= 0 

⇔ ∑ ∑ 𝑛(𝑥𝑖 , 𝑦𝑗)

|𝒴|

𝑗=1

|𝒳|

𝑖=1

− 𝜆1 = 0 ⇔ 𝜆1 = ∑ ∑ 𝑛(𝑥𝑖 , 𝑦𝑗)

|𝒴|

𝑗=1

|𝒳|

𝑖=1

 

This means the next parameters αk
(t+1) is: 

𝛼𝑘
(𝑡+1)

=
∑ ∑ 𝑛(𝑥𝑖, 𝑦𝑗)𝑃(𝑘|𝑥𝑖 , 𝑦𝑗, Θ(𝑡))

|𝒴|
𝑗=1

|𝒳|
𝑖=1

∑ ∑ 𝑛(𝑥𝑖, 𝑦𝑗)
|𝒴|
𝑗=1

|𝒳|
𝑖=1

 (2.12) 

The first-order partial derivative of Lagrange function regarding pi|k is: 

𝜕𝑙𝑎(Θ, λ|Θ(𝑡))

𝜕𝑝𝑖|𝑘
= ∑ 𝑛(𝑥𝑖, 𝑦𝑗)

1

𝑝𝑖|𝑘
𝑃(𝑘|𝑥𝑖, 𝑦𝑗 , Θ(𝑡))

|𝒴|

𝑗=1

− 𝜆2 

Setting this partial derivative to be zero, we obtain: 

∑ 𝑛(𝑥𝑖 , 𝑦𝑗)𝑃(𝑘|𝑥𝑖, 𝑦𝑗, Θ(𝑡))

|𝒴|

𝑗=1

− 𝑝𝑖|𝑘𝜆2 = 0 

Summing the equation above over 𝒳, we have: 

∑ ∑ 𝑛(𝑥𝑖, 𝑦𝑗)𝑃(𝑘|𝑥𝑖, 𝑦𝑗 , Θ(𝑡))

|𝒴|

𝑗=1

|𝒳|

𝑖=1

− 𝜆2 ∑ 𝑝𝑖|𝑘

|𝒳|

𝑖=1

= 0 

⇔ 𝜆2 = ∑ ∑ 𝑛(𝑥𝑖, 𝑦𝑗)𝑃(𝑘|𝑥𝑖 , 𝑦𝑗, Θ(𝑡))

|𝒴|

𝑗=1

|𝒳|

𝑖=1

 

This means the next parameters pi|k
(t+1) is: 

𝑝𝑖|𝑘
(𝑡+1)

=
∑ 𝑛(𝑥𝑖, 𝑦𝑗)𝑃(𝑘|𝑥𝑖, 𝑦𝑗 , Θ(𝑡))

|𝒴|
𝑗=1

∑ ∑ 𝑛(𝑥𝑖 , 𝑦𝑗)𝑃(𝑘|𝑥𝑖, 𝑦𝑗 , Θ(𝑡))
|𝒴|
𝑗=1

|𝒳|
𝑖=1

 (2.13) 
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Similarly, the next parameters qj|k
(t+1) is: 

𝑞𝑗|𝑘
(𝑡+1)

=
∑ 𝑛(𝑥𝑖 , 𝑦𝑗)𝑃(𝑘|𝑥𝑖, 𝑦𝑗, Θ(𝑡))

|𝒳|
𝑖=1

∑ ∑ 𝑛(𝑥𝑖, 𝑦𝑗)𝑃(𝑘|𝑥𝑖, 𝑦𝑗 , Θ(𝑡))
|𝒴|
𝑗=1

|𝒳|
𝑖=1

 (2.14) 

The two steps of GEM algorithm for SMM at some tth iteration are shown in Table 2.1. 

Table 2.1: E-step and M-step of GEM algorithm for SMM. 

E-step: 

The conditional probability P(k | xi, yj, Θ(t)) is calculated based on current parameter Θ(t) = (αk
(t), pi|k

(t), 

qj|k
(t))T, according to equation 2.11. 

𝑃(𝑘|𝑥𝑖 , 𝑦𝑗, Θ(𝑡)) =
𝛼𝑘

(𝑡)
𝑝𝑖|𝑘

(𝑡)
𝑞𝑗|𝑘

(𝑡)

∑ 𝛼𝑙
(𝑡)

𝑝𝑖|𝑙
(𝑡)

𝑞𝑗|𝑙
(𝑡)𝐾

𝑙=1

 

M-step: 

The next parameter Θ(t+1) = (αk
(t+1), pi|k

(t+1), qj|k
(t+1))T, which is a maximizer of Q(Θ | Θ(t)) with subject 

to Θ, is calculated by equation 2.12, equation 2.13, and equation 2.14. 

𝛼𝑘
(𝑡+1)

=
∑ ∑ 𝑛(𝑥𝑖, 𝑦𝑗)𝑃(𝑘|𝑥𝑖, 𝑦𝑗 , Θ(𝑡))

|𝒴|
𝑗=1

|𝒳|
𝑖=1

∑ ∑ 𝑛(𝑥𝑖, 𝑦𝑗)
|𝒴|
𝑗=1

|𝒳|
𝑖=1

 

𝑝𝑖|𝑘
(𝑡+1)

=
∑ 𝑛(𝑥𝑖 , 𝑦𝑗)𝑃(𝑘|𝑥𝑖, 𝑦𝑗 , Θ(𝑡))

|𝒴|
𝑗=1

∑ ∑ 𝑛(𝑥𝑖, 𝑦𝑗)𝑃(𝑘|𝑥𝑖 , 𝑦𝑗, Θ(𝑡))
|𝒴|
𝑗=1

|𝒳|
𝑖=1

 

𝑞𝑗|𝑘
(𝑡+1)

=
∑ 𝑛(𝑥𝑖 , 𝑦𝑗)𝑃(𝑘|𝑥𝑖, 𝑦𝑗 , Θ(𝑡))

|𝒳|
𝑖=1

∑ ∑ 𝑛(𝑥𝑖, 𝑦𝑗)𝑃(𝑘|𝑥𝑖 , 𝑦𝑗, Θ(𝑡))
|𝒴|
𝑗=1

|𝒳|
𝑖=1

 

GEM algorithm converges at some tth iteration. At that time, Θ* = Θ(t+1) = Θ(t) is the SMM itself. When 

SMM is applied into soft clustering, dyadic data is clustered according to blocks and each αk is coverage 

ratio of cluster k (aspect k). 

The mixture model of dyadic data is called asymmetric mixture model (AMM) if αk (s) are only 

independent from xi or from yj. Without loss of generality, given αk (s) are only independent from yj (of 

course, it is dependent on xi), AMM is defined as follows (Hofmann & Puzicha, Statistical Models for 

Co-occurrence Data, 1998, p. 3): 

𝑃(𝑥𝑖, 𝑦𝑗|Θ) = 𝑝𝑖𝑞𝑗|𝑖 = 𝑝𝑖 ∑ 𝛼𝑘|𝑖𝑞𝑗|𝑘

𝐾

𝑘=1

 (2.15) 
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The αk|i is the probability of aspect k given xi. 

𝛼𝑘|𝑖 = 𝑃(𝑘|𝑥𝑖) 

Where pi is the probability of xi. 

𝑝𝑖 = 𝑃(𝑥𝑖) 

The qj|k is the conditional probability of yj given aspect k. Suppose yj is independent from xi given k, we 

have: 

𝑞𝑗|𝑘 = 𝑃(𝑦𝑗|𝑥𝑖, 𝑘) = 𝑃(𝑦𝑗|𝑘) 

Note, qj|i is the conditional probability of yj given xi, which is defined as follows: 

𝑞𝑗|𝑖 = 𝑃(𝑦𝑗|𝑥𝑖) = ∑ 𝛼𝑘|𝑖𝑞𝑗|𝑘

𝐾

𝑘=1

 

The joint probability of xi, yj, and k is: 

𝑃(𝑥𝑖, 𝑦𝑗 , 𝑘) = 𝑃(𝑥𝑖)𝑃(𝑦𝑗 , 𝑘|𝑥𝑖) = 𝑃(𝑥𝑖)𝑃(𝑘|𝑥𝑖)𝑃(𝑦𝑗|𝑥𝑖 , 𝑘) = 𝑝𝑖𝛼𝑘|𝑖𝑃(𝑦𝑗|𝑘) = 𝑝𝑖𝛼𝑘|𝑖𝑞𝑗|𝑘 

The parameter of AMM is Θ = (αk|i, pi, qj|k)
T in which there are K(|𝒳| + |𝒴|) + |𝒳| partial parameters 

αk|i, pi, and qj|k. Note, 

∑ 𝛼𝑘|𝑖

𝐾

𝑘=1

= 1, ∑ 𝑝𝑖

|𝒳|

𝑖=1

= 1, ∑ 𝑞𝑗|𝑘

|𝒴|

𝑗=1

= 1 

By applying GEM, given dyadic sample 𝒮, at the tth iteration of GEM, given current parameter Θ(t) = 

(αk
(t), pi|k

(t), qj|k
(t))T, the conditional expectation Q(Θ|Θ(t)) is: 

𝑄(Θ|Θ(𝑡)) = ∑ ∑ 𝑃(𝑘|𝑥𝑖(𝑟), 𝑦𝑗(𝑟), Θ(𝑡))log(𝛼𝑘|𝑖𝑝𝑖𝑞𝑗|𝑘)

𝐾

𝑘=1

|𝒮|

𝑟=1

= ∑ ∑ 𝑛(𝑥𝑖, 𝑦𝑗) ∑ 𝑃(𝑘|𝑥𝑖 , 𝑦𝑗, Θ(𝑡)) (log(𝛼𝑘|𝑖) + log(𝑝𝑖)

𝐾

𝑘=1

|𝒴|

𝑗=1

|𝒳|

𝑖=1

+ log(𝑞𝑗|𝑘)) 

(2.16) 

Where, 

𝑃(𝑘|𝑥𝑖, 𝑦𝑗 , Θ(𝑡)) =
𝛼𝑘|𝑖

(𝑡)
𝑝𝑖

(𝑡)
𝑞𝑗|𝑘

(𝑡)

∑ 𝛼𝑙|𝑖
(𝑡)

𝑝𝑖
(𝑡)

𝑞𝑗|𝑙
(𝑡)𝐾

𝑙=1

 (2.17) 
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Please refer to equation 1.4 to comprehend equation 2.17. Because there are three constraints 

∑ 𝛼𝑘|𝑖

𝐾

𝑘=1

= 1, ∑ 𝑝𝑖

|𝒳|

𝑖=1

= 1, ∑ 𝑞𝑗|𝑘

|𝒴|

𝑗=1

= 1 

We use Lagrange duality method to maximize Q(Θ|Θ(t)). The Lagrange function la(Θ, λ | Θ(t)) is sum 

of Q(Θ|Θ(t)) and these constraints, as follows: 

𝑙𝑎(Θ, λ|Θ(𝑡)) = 𝑄(Θ|Θ(𝑡)) + 𝜆1 (1 − ∑ 𝛼𝑘|𝑖

𝐾

𝑘=1

) + 𝜆2 (1 − ∑ 𝑝𝑖

|𝒳|

𝑖=1

) + 𝜆3 (1 − ∑ 𝑞𝑗|𝑘

|𝒴|

𝑗=1

)

= ∑ ∑ 𝑛(𝑥𝑖, 𝑦𝑗) ∑ 𝑃(𝑘|𝑥𝑖 , 𝑦𝑗, Θ(𝑡)) (log(𝛼𝑘|𝑖) + log(𝑝𝑖) + log(𝑞𝑗|𝑘))

𝐾

𝑘=1

|𝒴|

𝑗=1

|𝒳|

𝑖=1

+ 𝜆1 (1 − ∑ 𝛼𝑘|𝑖

𝐾

𝑘=1

) + 𝜆2 (1 − ∑ 𝑝𝑖

|𝒳|

𝑖=1

) + 𝜆3 (1 − ∑ 𝑞𝑗|𝑘

|𝒴|

𝑗=1

) 

Note, λ = (λ1, λ2, λ3)
T where λ1≥0, λ2≥0, and λ3≥0 are called Lagrange multipliers. Of course, la(Θ, λ | 

Θ(t)) is function of Θ and λ. The next parameters Θ(t+1) that maximizes Q(Θ|Θ(t)) at M-step of some tth 

iteration is solution of the equation formed by setting the first-order partial derivatives of Lagrange 

function regarding Θ and λ to be zero. 

The first-order partial derivative of Lagrange function regarding αk|i is: 

𝜕𝑙𝑎(Θ, λ|Θ(𝑡))

𝜕𝛼𝑘|𝑖
= ∑ 𝑛(𝑥𝑖 , 𝑦𝑗)

1

𝛼𝑘|𝑖
𝑃(𝑘|𝑥𝑖 , 𝑦𝑗, Θ(𝑡))

|𝒴|

𝑗=1

− 𝜆1 

Setting this partial derivative to be zero, we obtain: 

∑ 𝑛(𝑥𝑖, 𝑦𝑗)𝑃(𝑘|𝑥𝑖, 𝑦𝑗 , Θ(𝑡))

|𝒴|

𝑗=1

− 𝛼𝑘|𝑖𝜆1 = 0 

Summing the equation above over K aspects {1, 2,…, K}, we have: 

∑ 𝑛(𝑥𝑖, 𝑦𝑗) ∑ 𝑃(𝑘|𝑥𝑖, 𝑦𝑗 , Θ(𝑡))

𝐾

𝑘=1

|𝒴|

𝑗=1

− 𝜆1 ∑ 𝛼𝑘

𝐾

𝑘=1

= 0 

⇔ ∑ 𝑛(𝑥𝑖 , 𝑦𝑗)

|𝒴|

𝑗=1

− 𝜆1 = 0 ⇔ 𝜆1 = ∑ 𝑛(𝑥𝑖, 𝑦𝑗)

|𝒴|

𝑗=1

 

This means the next parameters αk|i
(t+1) is: 
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𝛼𝑘|𝑖
(𝑡+1)

=
∑ 𝑛(𝑥𝑖, 𝑦𝑗)𝑃(𝑘|𝑥𝑖, 𝑦𝑗 , Θ(𝑡))

|𝒴|
𝑗=1

∑ 𝑛(𝑥𝑖, 𝑦𝑗)
|𝒴|
𝑗=1

 (2.18) 

The first-order partial derivative of Lagrange function regarding pi is: 

𝜕𝑙𝑎(Θ, λ|Θ(𝑡))

𝜕𝑝𝑖
= ∑ 𝑛(𝑥𝑖, 𝑦𝑗)

1

𝑝𝑖

|𝒴|

𝑗=1

− 𝜆2 

Setting this partial derivative to be zero, we obtain: 

∑ 𝑛(𝑥𝑖, 𝑦𝑗)

|𝒴|

𝑗=1

− 𝑝𝑖𝜆2 = 0 

Summing the equation above over 𝒳, we have: 

∑ ∑ 𝑛(𝑥𝑖, 𝑦𝑗)

|𝒴|

𝑗=1

|𝒳|

𝑖=1

− 𝜆2 ∑ 𝑝𝑖

|𝒳|

𝑖=1

= 0 

⇔ 𝜆2 = ∑ ∑ 𝑛(𝑥𝑖, 𝑦𝑗)

|𝒴|

𝑗=1

|𝒳|

𝑖=1

 

This means the next parameters pi
(t+1) is: 

𝑝𝑖
(𝑡+1)

=
∑ 𝑛(𝑥𝑖, 𝑦𝑗)

|𝒴|
𝑗=1

∑ ∑ 𝑛(𝑥𝑖 , 𝑦𝑗)
|𝒴|
𝑗=1

|𝒳|
𝑖=1

 (2.19) 

The first-order partial derivative of Lagrange function regarding qj|k is: 

𝜕𝑙𝑎(Θ, λ|Θ(𝑡))

𝜕𝑞𝑗|𝑘
= ∑ 𝑛(𝑥𝑖, 𝑦𝑗)

1

𝑞𝑗|𝑘
𝑃(𝑘|𝑥𝑖, 𝑦𝑗 , Θ(𝑡))

|𝒳|

𝑖=1

− 𝜆3 

Setting this partial derivative to be zero, we obtain: 

∑ 𝑛(𝑥𝑖, 𝑦𝑗)𝑃(𝑘|𝑥𝑖 , 𝑦𝑗, Θ(𝑡))

|𝒳|

𝑖=1

− 𝑞𝑗|𝑘𝜆3 = 0 

Summing the equation above over 𝒴, we have: 
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∑ ∑ 𝑛(𝑥𝑖, 𝑦𝑗)𝑃(𝑘|𝑥𝑖, 𝑦𝑗 , Θ(𝑡))

|𝒴|

𝑗=1

|𝒳|

𝑖=1

− 𝜆3 ∑ 𝑞𝑗|𝑘

|𝒴|

𝑗=1

 

 

⇔ ∑ ∑ 𝑛(𝑥𝑖 , 𝑦𝑗)𝑃(𝑘|𝑥𝑖, 𝑦𝑗 , Θ(𝑡))

|𝒴|

𝑗=1

|𝒳|

𝑖=1

− 𝜆3 ⇔ 𝜆3 = ∑ ∑ 𝑛(𝑥𝑖, 𝑦𝑗)𝑃(𝑘|𝑥𝑖 , 𝑦𝑗, Θ(𝑡))

|𝒴|

𝑗=1

|𝒳|

𝑖=1

 

This means the next parameters qj|k
(t+1) is: 

𝑞𝑗|𝑘
(𝑡+1)

=
∑ 𝑛(𝑥𝑖, 𝑦𝑗)𝑃(𝑘|𝑥𝑖 , 𝑦𝑗, Θ(𝑡))

|𝒳|
𝑖=1

∑ ∑ 𝑛(𝑥𝑖, 𝑦𝑗)𝑃(𝑘|𝑥𝑖, 𝑦𝑗 , Θ(𝑡))
|𝒴|
𝑗=1

|𝒳|
𝑖=1

 (2.20) 

The two steps of GEM algorithm for AMM at some tth iteration are shown in Table 2.2. 

Table 2.2: E-step and M-step of GEM algorithm for AMM. 

E-step: 

The conditional probability P(k | xi, yj, Θ(t)) is calculated based on current parameter Θ(t) = (αk|i
(t), pi

(t), 

qj|k
(t))T, according to equation 2.17. 

𝑃(𝑘|𝑥𝑖 , 𝑦𝑗, Θ(𝑡)) =
𝛼𝑘|𝑖

(𝑡)
𝑝𝑖

(𝑡)
𝑞𝑗|𝑘

(𝑡)

∑ 𝛼𝑙|𝑖
(𝑡)

𝑝𝑖
(𝑡)

𝑞𝑗|𝑙
(𝑡)𝐾

𝑙=1

 

M-step: 

The next parameter Θ(t+1) = (αk|i
(t+1), pi

(t+1), qj|k
(t+1))T, which is a maximizer of Q(Θ | Θ(t)) with subject 

to Θ, is calculated by equation 2.18, equation 2.19, and equation 2.20. 

𝛼𝑘|𝑖
(𝑡+1)

=
∑ 𝑛(𝑥𝑖, 𝑦𝑗)𝑃(𝑘|𝑥𝑖, 𝑦𝑗 , Θ(𝑡))

|𝒴|
𝑗=1

∑ 𝑛(𝑥𝑖, 𝑦𝑗)
|𝒴|
𝑗=1

 

𝑝𝑖
(𝑡+1)

=
∑ 𝑛(𝑥𝑖, 𝑦𝑗)

|𝒴|
𝑗=1

∑ ∑ 𝑛(𝑥𝑖 , 𝑦𝑗)
|𝒴|
𝑗=1

|𝒳|
𝑖=1

 

𝑞𝑗|𝑘
(𝑡+1)

=
∑ 𝑛(𝑥𝑖, 𝑦𝑗)𝑃(𝑘|𝑥𝑖, 𝑦𝑗 , Θ(𝑡))

|𝒳|
𝑖=1

∑ ∑ 𝑛(𝑥𝑖 , 𝑦𝑗)𝑃(𝑘|𝑥𝑖, 𝑦𝑗, Θ(𝑡))
|𝒴|
𝑗=1

|𝒳|
𝑖=1

 

GEM algorithm converges at some tth iteration. At that time, Θ* = Θ(t+1) = Θ(t) is the AMM itself. When 

AMM is applied into soft clustering, dyadic data is clustered vertically (horizontally) and each αk|i is 
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coverage ratio of cluster k (aspect k) according to xi. Soft clustering with AMM is also called one-side 

clustering. 

Product-space mixture model (PMM) is derived from SMM with a minor change that the aspect set {1, 

2,…, K} is Cartesian product of 𝒳-aspect set {1, 2,…, 𝐾𝒳} and 𝒴-aspect set {1, 2,…, 𝐾𝒴}. In other 

words, the aspect space is still symmetric but is checked (stripped) according to two directions 𝒳 and 

𝒴. 

{1,2, … , 𝐾} ∼ {1,2, … , 𝐾𝒳} × {1,2, … , 𝐾𝒴}

𝐾 = 𝐾𝒳𝐾𝒴
 (2.21) 

For every k belongs to {1, 2,…, K}, there always exists a respective pair: 𝑘𝒳 ∈ {1,2, … , 𝐾𝒳} and 𝑘𝒴 ∈

{1,2, … , 𝐾𝒴}. However, for each 𝑘𝒳 or each 𝑘𝒴, there are many respective k. 

𝑘 ∼ {𝑘𝒳 , 𝑘𝒴}

𝑘𝒳~many 𝑘
𝑘𝒴~many 𝑘

 (2.22) 

The sign “∼” denotes correspondence. PMM is defined as follows (Hofmann & Puzicha, Statistical 

Models for Co-occurrence Data, 1998, p. 4): 

𝑃(𝑥𝑖 , 𝑦𝑗|Θ) = ∑ 𝛼𝑘𝑝𝑖|𝑘𝒳
𝑞𝑗|𝑘𝒴

𝐾

𝑘=1

 (2.23) 

As usual, αk is the probability of aspect ck but 𝑝𝑖|𝑘𝒳
 is the probability of xi given 𝑘𝒳 of k and 𝑞𝑗|𝑘𝒴

 is 

the probability of yj given 𝑘𝒴 of k. 

𝑝𝑖|𝑘𝒳
= 𝑃(𝑥𝑖|𝑘𝒳)

𝑞𝑗|𝑘𝒴
= 𝑃(𝑦𝑗|𝑘𝒴)

 

The joint probability of xi, yj, and k is: 

𝑃(𝑥𝑖 , 𝑦𝑗, 𝑘) = 𝑃(𝑘)𝑃(𝑥𝑖 , 𝑦𝑗|𝑘) = 𝛼𝑘𝑃(𝑥𝑖|𝑘)𝑃(𝑦𝑗|𝑘) = 𝛼𝑘𝑃(𝑥𝑖|𝑘𝒳)𝑃(𝑦𝑗|𝑘𝒴) = 𝛼𝑘𝑝𝑖|𝑘𝒳
𝑞𝑗|𝑘𝒴

 

The parameter of PMM is Θ = (αk, 𝑝𝑖|𝑘𝒳
, 𝑞𝑗|𝑘𝒴

)T in which there are K + 𝐾𝒳|𝒳| + 𝐾𝒴|𝒴| partial 

parameters αk, 𝑝𝑖|𝑘𝒳
, and 𝑞𝑗|𝑘𝒴

. Note, 

∑ 𝛼𝑘

𝐾

𝑘=1

= 1, ∑ 𝑝𝑖|𝑘𝒳

|𝒳|

𝑖=1

= 1, ∑ 𝑞𝑗|𝑘𝒴

|𝒴|

𝑗=1

= 1 

Learning PMM is like learning SMM and so it is not necessary to duplicate the expansion of Q(Θ|Θ(t)). 

The two steps of GEM algorithm for PMM at some tth iteration are shown in Table 2.3. 
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Table 2.3: E-step and M-step of GEM algorithm for PMM. 

E-step: 

The conditional probabilities P(k | xi, yj, Θ(t)), P(𝑘𝒳 | xi, yj, Θ(t)), and P(𝑘𝒴 | xi, yj, Θ(t)) are calculated 

based on current parameter Θ(t) = (𝛼𝑘
(𝑡)

, 𝑝𝑖|𝑘𝒳

(𝑡)
, 𝑞

𝑗|𝑘𝒴

(𝑡)
)

𝑇
, according to equation 2.24, equation 2.25, and 

equation 2.26. 

𝑃(𝑘|𝑥𝑖 , 𝑦𝑗, Θ(𝑡)) =
𝛼𝑘

(𝑡)
𝑝𝑖|𝑘𝒳

(𝑡)
𝑞

𝑗|𝑘𝒴

(𝑡)

∑ 𝛼𝑙
(𝑡)

𝑝𝑖|𝑙𝒳

(𝑡)
𝑞

𝑗|𝑙𝒴

(𝑡)𝐾
𝑙=1

 (2.24) 

𝑃(𝑘𝒳|𝑥𝑖 , 𝑦𝑗, Θ(𝑡)) = ∑ 𝑃(𝑘|𝑥𝑖 , 𝑦𝑗, Θ(𝑡))

𝑘:𝑘𝒳~𝑘

 (2.25) 

𝑃(𝑘𝒴|𝑥𝑖, 𝑦𝑗 , Θ(𝑡)) = ∑ 𝑃(𝑘|𝑥𝑖, 𝑦𝑗 , Θ(𝑡))

𝑘:𝑘𝒴~𝑘

 (2.26) 

Please refer to equation 1.4 to comprehend equation 2.24. 

M-step: 

The next parameter Θ(t+1) = (𝛼𝑘
(𝑡+1)

, 𝑝𝑖|𝑘𝒳

(𝑡+1)
, 𝑞

𝑗|𝑘𝒴

(𝑡+1)
)

𝑇
, which is the maximizer of Q(Θ | Θ(t)) with 

subject to Θ, is calculated by equation 2.27, equation 2.28, and equation 2.29. 

𝛼𝑘
(𝑡+1)

=
∑ ∑ 𝑛(𝑥𝑖, 𝑦𝑗)𝑃(𝑘|𝑥𝑖 , 𝑦𝑗, Θ(𝑡))

|𝒴|
𝑗=1

|𝒳|
𝑖=1

∑ ∑ 𝑛(𝑥𝑖, 𝑦𝑗)
|𝒴|
𝑗=1

|𝒳|
𝑖=1

 (2.27) 

𝑝𝑖|𝑘𝒳

(𝑡+1)
=

∑ 𝑛(𝑥𝑖, 𝑦𝑗)𝑃(𝑘𝒳|𝑥𝑖, 𝑦𝑗 , Θ(𝑡))
|𝒴|
𝑗=1

∑ ∑ 𝑛(𝑥𝑖, 𝑦𝑗)𝑃(𝑘𝒳|𝑥𝑖 , 𝑦𝑗, Θ(𝑡))
|𝒴|
𝑗=1

|𝒳|
𝑖=1

 (2.28) 

𝑞
𝑗|𝑘𝒴

(𝑡+1)
=

∑ 𝑛(𝑥𝑖 , 𝑦𝑗)𝑃(𝑘𝒴|𝑥𝑖 , 𝑦𝑗, Θ(𝑡))
|𝒳|
𝑖=1

∑ ∑ 𝑛(𝑥𝑖, 𝑦𝑗)𝑃(𝑘𝒴|𝑥𝑖, 𝑦𝑗 , Θ(𝑡))
|𝒴|
𝑗=1

|𝒳|
𝑖=1

 (2.29) 

   

GEM algorithm converges at some tth iteration. At that time, Θ* = Θ(t+1) = Θ(t) is the PMM itself. When 

PMM is applied into soft clustering, dyadic data is clustered in checked (stripped) and each αk is 
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coverage ratio of cluster k (aspect k) but such cluster k corresponds to a pair of cluster 𝑘𝒳 and cluster 

𝑘𝒴. Soft clustering with PMM is also called two-side clustering. 

3. Predicting unaccomplished co-occurrent values 

This section is the main subject of this research in which some extensions of dyadic mixture models 

are used to predict unaccomplished values in valued dyadic data. When 𝒮 is valued dyadic data in which 

every co-occurrence (xi, yj) is associated with value z from random variable Z then, SMM is reformed 

as follows: 

𝑓(𝑥𝑖, 𝑦𝑗 , 𝑍|Θ) = ∑ 𝛼𝑘𝑝𝑖|𝑘𝑞𝑗|𝑘𝑓𝑘(𝑍|𝜑𝑘)

𝐾

𝑘=1

 (3.1) 

AMM is reformed as follows: 

𝑓(𝑥𝑖, 𝑦𝑗 , 𝑍|Θ) = 𝑝𝑖 ∑ 𝛼𝑘|𝑖𝑞𝑗|𝑘𝑓𝑘(𝑍|𝜑𝑘)

𝐾

𝑘=1

 (3.2) 

PMM is reformed as follows: 

𝑓(𝑥𝑖, 𝑦𝑗 , 𝑍|Θ) = ∑ 𝛼𝑘𝑝𝑖|𝑘𝒳
𝑞𝑗|𝑘𝒴

𝑓𝑘(𝑍|𝜑𝑘)

𝐾

𝑘=1

 (3.3) 

Where fk(Z|φk) is the kth PDF of Z corresponding to the aspect k, in which φk is parameter of fk(Z|φk). Of 

course, the parameter Θ now must include all φk. It is possible to consider that 

𝑓𝑘(𝑍|𝜑𝑘) = 𝑓(𝑍|𝑘, 𝜑𝑘) 

Moreover, Z is only dependent on k. 

𝑓(𝑍|𝑥𝑖 , 𝑘, 𝜑𝑘) = 𝑓(𝑍|𝑘, 𝜑𝑘) = 𝑓𝑘(𝑍|𝜑𝑘) 

Note, suppose xi and yj (as well as yj given xi) are independent from Z given aspect k, which is the hint 

to reform these models. 

𝑃(𝑥𝑖, 𝑦𝑗|𝑘, 𝑍) = 𝑃(𝑥𝑖 , 𝑦𝑗|𝑘) 

𝑃(𝑦𝑗|𝑥𝑖, 𝑍, 𝑘) = 𝑃(𝑦𝑗|𝑥𝑖, 𝑘) 

For example, within SMM, the joint PDF of xi, yj, Z, and k is: 

𝑓(𝑥𝑖, 𝑦𝑗 , 𝑍, 𝑘) = 𝑃(𝑘)𝑃(𝑥𝑖, 𝑦𝑗, 𝑍|𝑘) = 𝛼𝑘𝑃(𝑥𝑖, 𝑦𝑗|𝑘, 𝑍)𝑓(𝑍|𝑘, 𝜑𝑘) = 𝛼𝑘𝑃(𝑥𝑖, 𝑦𝑗|𝑘)𝑓𝑘(𝑍|𝜑𝑘)

= 𝛼𝑘𝑃(𝑥𝑖|𝑘)𝑃(𝑦𝑗|𝑘)𝑓𝑘(𝑍|𝜑𝑘) = 𝛼𝑘𝑝𝑖|𝑘𝑞𝑗|𝑘𝑓𝑘(𝑍|𝜑𝑘) 
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Within AMM, the joint PDF of xi, yj, Z, and k is: 

𝑓(𝑥𝑖, 𝑦𝑗 , 𝑍, 𝑘) = 𝑃(𝑥𝑖)𝑃(𝑦𝑗 , 𝑍, 𝑘|𝑥𝑖) = 𝑝𝑖𝑃(𝑘|𝑥𝑖)𝑃(𝑦𝑗 , 𝑍|𝑥𝑖, 𝑘) = 𝑝𝑖𝛼𝑘|𝑖𝑃(𝑦𝑗|𝑥𝑖 , 𝑍, 𝑘)𝑓(𝑍|𝑥𝑖 , 𝑘, 𝜑𝑘)

= 𝑝𝑖𝛼𝑘|𝑖𝑃(𝑦𝑗|𝑥𝑖, 𝑘)𝑓(𝑍|𝑘, 𝜑𝑘) = 𝑝𝑖𝛼𝑘|𝑖𝑃(𝑦𝑗|𝑘)𝑓𝑘(𝑍|𝜑𝑘) = 𝑝𝑖𝛼𝑘|𝑖𝑞𝑗|𝑘𝑓𝑘(𝑍|𝜑𝑘) 

Within PMM, the joint PDF of xi, yj, Z, and k is: 

𝑓(𝑥𝑖, 𝑦𝑗 , 𝑍, 𝑘) = 𝑃(𝑘)𝑃(𝑥𝑖, 𝑦𝑗, 𝑍|𝑘) = 𝛼𝑘𝑃(𝑥𝑖, 𝑦𝑗|𝑍, 𝑘)𝑓(𝑍|𝑘, 𝜑𝑘) = 𝛼𝑘𝑃(𝑥𝑖, 𝑦𝑗|𝑘)𝑓𝑘(𝑍|𝜑𝑘)

= 𝛼𝑘𝑃(𝑥𝑖|𝑘𝒳)𝑃(𝑦𝑗|𝑘𝒴)𝑓𝑘(𝑍|𝜑𝑘) = 𝛼𝑘𝑝𝑖|𝑘𝒳
𝑞𝑗|𝑘𝒴

𝑓𝑘(𝑍|𝜑𝑘)∎ 

Here it is only necessary to estimate φk because how to estimate other partial parameters was mentioned 

in section 2. By reforming the conditional expectation Q(Θ|Θ(t)), it is easy to find out that the next 

parameter φk
(t+1) is solution of following equation: 

∑ 𝑃(𝑘|𝑥𝑖(𝑟), 𝑦𝑗(𝑟), Θ(𝑡))
dlog(𝑓𝑘(𝑍(𝑟)|𝜑𝑘))

d𝜑𝑘

|𝒮|

𝑟=1

 (3.4) 

Where P(k | xi(r), yj(r), Θ(t)) is specified by equation 2.11, equation 2.17, and equation 2.24 for SMM, 

AMM, and PMM, respectively. Especially, if fk(Z|φk) distributed normally, the next parameter φk
(t+1) = 

(μk
(t+1), Σk

(t+1))T containing mean μk
(t+1) and covariance matrix Σk

(t+1) is calculated as follows: 

𝜇𝑘
(𝑡+1)

=
∑ 𝑃(𝑘|𝑥𝑖(𝑟), 𝑦𝑗(𝑟), Θ(𝑡))𝑍(𝑟)|𝒮|

𝑟=1

∑ 𝑃(𝑘|𝑥𝑖(𝑟), 𝑦𝑗(𝑟), Θ(𝑡))
|𝒮|
𝑖=1

 

Σ𝑘
(𝑡+1)

=

∑ 𝑃(𝑘|𝑥𝑖(𝑟), 𝑦𝑗(𝑟), Θ(𝑡)) ((𝑍(𝑟) − 𝜇𝑘
(𝑡+1)

) (𝑍(𝑟) − 𝜇𝑘
(𝑡+1)

)
𝑇

)
|𝒮|
𝑟=1

∑ 𝑃(𝑘|𝑥𝑖(𝑟), 𝑦𝑗(𝑟), Θ(𝑡))
|𝒮|
𝑟=1

 

(3.5) 

Where P(k | xi(r), yj(r), Θ(t)) is specified by equation 2.11, equation 2.17, and equation 2.24 for SMM, 

AMM, and PMM, respectively. Please refer to (Nguyen, 2020, pp. 83-84) to comprehend equation 3.5. 

In valued dyadic sample 𝒮, many co-occurrences (xi, yj) are not existent and thus, it is required to predict 

or estimate Z value of inexistent co-occurrence (xi, yj). This Z value is called unaccomplished co-

occurrent value or unaccomplished associative value. A so-called expected co-occurrent (EC) method 

is used to estimate Z. Firstly, it is necessary to define the conditional PDF of Z given xi and yj. According 

to Bayes’ rule, we have: 

𝑓(𝑍|𝑥𝑖, 𝑦𝑗, Θ) =
𝑓(𝑥𝑖, 𝑦𝑗 , 𝑍)

∫ 𝑓(𝑥𝑖, 𝑦𝑗, 𝑍|Θ)d𝑍
𝑍

=
𝑓(𝑥𝑖, 𝑦𝑗 , 𝑍|Θ)

𝑓(𝑥𝑖 , 𝑦𝑗|Θ)
 (3.6) 

Then, Z value of inexistent co-occurrence (xi, yj) is estimated by an estimate �̂� which is the expectation 

of Z given the conditional PDF f(Z | xi, yj, Θ), as follows: 
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�̂� = 𝐸(𝑍|Θ) = ∫ 𝑍𝑓(𝑍|𝑥𝑖 , 𝑦𝑗 , Θ)d𝑍

𝑍

 (3.7) 

In short, EC method is specified by equation 3.6 and equation 3.7. Now we expend the two equations 

for SMM, AMM, and PMM. The conditional PDF f(Z | xi, yj, Θ) of SMM is: 

𝑓(𝑍|𝑥𝑖, 𝑦𝑗, Θ) =
∑ 𝛼𝑘𝑝𝑖|𝑘𝑞𝑗|𝑘𝑓𝑘(𝑍|𝜑𝑘)𝐾

𝑘=1

∑ 𝛼𝑘𝑝𝑖|𝑘𝑞𝑗|𝑘
𝐾
𝑘=1

 (3.8) 

Following is the proof of equation 3.8. 

𝑓(𝑍|𝑥𝑖, 𝑦𝑗, Θ) =
∑ 𝛼𝑘𝑝𝑖|𝑘𝑞𝑗|𝑘𝑓𝑘(𝑍|𝜑𝑘)𝐾

𝑘=1

∫ ∑ 𝛼𝑘𝑝𝑖|𝑘𝑞𝑗|𝑘𝑓𝑘(𝑍|𝜑𝑘)𝐾
𝑘=1𝑍

=
∑ 𝛼𝑘𝑝𝑖|𝑘𝑞𝑗|𝑘𝑓𝑘(𝑍|𝜑𝑘)𝐾

𝑘=1

∑ 𝛼𝑘𝑝𝑖|𝑘𝑞𝑗|𝑘 ∫ 𝑓𝑘(𝑍|𝜑𝑘)
𝑍

𝐾
𝑘=1

=
∑ 𝛼𝑘𝑝𝑖|𝑘𝑞𝑗|𝑘𝑓𝑘(𝑍|𝜑𝑘)𝐾

𝑘=1

∑ 𝛼𝑘𝑝𝑖|𝑘𝑞𝑗|𝑘
𝐾
𝑘=1

∎ 

Similarly, the conditional PDF f(Z | xi, yj, Θ) of AMM is: 

𝑓(𝑍|𝑥𝑖 , 𝑦𝑗, Θ) =
∑ 𝛼𝑘|𝑖𝑞𝑗|𝑘𝑓𝑘(𝑍|𝜑𝑘)𝐾

𝑘=1

∑ 𝛼𝑘|𝑖𝑞𝑗|𝑘
𝐾
𝑘=1

 (3.9) 

The conditional PDF f(Z | xi, yj, Θ) of PMM is: 

𝑓(𝑍|𝑥𝑖 , 𝑦𝑗, Θ) =
∑ 𝛼𝑘𝑝𝑖|𝑘𝒳

𝑞𝑗|𝑘𝒴
𝑓𝑘(𝑍|𝜑𝑘)𝐾

𝑘=1

∑ 𝛼𝑘𝑝𝑖|𝑘𝒳
𝑞𝑗|𝑘𝒴

𝐾
𝑘=1

 (3.10) 

Obviously, equation 3.8, equation 3.9, and equation 3.10 are extensions of equation 3.6. 

The estimate �̂� for SMM is: 

�̂� =
∑ 𝛼𝑘𝑝𝑖|𝑘𝑞𝑗|𝑘𝐸𝑘(𝑍|𝜑𝑘)𝐾

𝑘=1

∑ 𝛼𝑘𝑝𝑖|𝑘𝑞𝑗|𝑘
𝐾
𝑘=1

 (3.11) 

The estimate �̂� for AMM is: 

�̂� =
∑ 𝛼𝑘|𝑖𝑞𝑗|𝑘𝐸𝑘(𝑍|𝜑𝑘)𝐾

𝑘=1

∑ 𝛼𝑘|𝑖𝑞𝑗|𝑘
𝐾
𝑘=1

 (3.12) 

The estimate �̂� for PMM is: 
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�̂� =
∑ 𝛼𝑘𝑝𝑖|𝑘𝒳

𝑞𝑗|𝑘𝒴
𝐸𝑘(𝑍|𝜑𝑘)𝐾

𝑘=1

∑ 𝛼𝑘𝑝𝑖|𝑘𝒳
𝑞𝑗|𝑘𝒴

𝐾
𝑘=1

 (3.13) 

Where Ek(Z|φk) is expectation of Z given the kth PDF of Z: 

𝐸𝑘(𝑍|𝜑𝑘) = ∫ 𝑍𝑓𝑘(𝑍|𝜑𝑘)d𝑍

𝑍

 (3.14) 

If fk(Z|φk) is multinormal PDF with mean μk and covariance matrix Σk then, we have Ek(Z|φk) = μk. Note, 

equation 3.11, equation 3.12, and equation 3.13 are extensions of equation 3.7. 

Hofmann’s research (Hofmann, Latent Semantic Models for Collaborative Filtering, 2004) is different 

from EC method when Hofmann assumed that fk(Z|φk) is dependent on both k and xi so that fk(Z|φk) is 

replaced by 𝑓𝑖𝑘(𝑍|𝜑𝑖𝑘). 

𝑓𝑖𝑘(𝑍|𝜑𝑖𝑘) = 𝑓(𝑍|𝑥𝑖, 𝑘, 𝜑𝑖𝑘) = 𝑓(𝑍|𝑥𝑖, 𝑦𝑗, 𝑘, 𝜑𝑖𝑘) 

Hofmann also assumed that (Hofmann & Puzieha, Latent Class Models for Collaborative Filtering, 

1999, p. 690) 

𝑃(𝑘|𝑥𝑖 , 𝑦𝑗) = 𝑃(𝑘|𝑦𝑗) =
𝑃(𝑘)𝑃(𝑦𝑗|𝑘)

∑ 𝑃(𝑘)𝑃(𝑦𝑗|𝑘)𝐾
𝑘=1

=
𝛼𝑘𝑞𝑗|𝑘

∑ 𝛼𝑘𝑞𝑗|𝑘
𝐾
𝑘=1

∝ 𝛼𝑘𝑞𝑗|𝑘 

The sign “∝” indicates the proportion. Therefore, according to Hofmann, the conditional PDF f(Z | xi, 

yj, Θ) was defined as follows: 

𝑓(𝑍|𝑥𝑖, 𝑦𝑗 , Θ) = ∑ 𝑃(𝑘|𝑥𝑖, 𝑦𝑗)𝑓(𝑍|𝑥𝑖, 𝑦𝑗 , 𝑘, 𝜑𝑖𝑘)

𝐾

𝑘=1

∝ ∑ 𝛼𝑘𝑞𝑗|𝑘𝑓𝑖𝑘(𝑍|𝜑𝑖𝑘)

𝐾

𝑘=1

 (3.15) 

The estimate �̂� is still calculated by equation 3.7 except that f(Z | xi, yj, Θ) was defined by equation 

3.15. As a result, equation 3.15 is the real mixture model of Hofmann in (Hofmann, Latent Semantic 

Models for Collaborative Filtering, 2004) and then Hofmann applied EM algorithm to learn parameters 

αk, qj|k, and φik. Therefore, Hofmann’s mixture model in (Hofmann, Latent Semantic Models for 

Collaborative Filtering, 2004) is not mixture models of co-occurrences (xi, yj) specified by equation 2.9 

(SMM), equation 2.15 (AMM), and 2.23 (PMM). Hofmann’s mixture model is appropriate to 

collaborative filtering. 

4. Conclusions 

Essentially, learning dyadic data with models such as SMM, AMM, and PMM is unsupervised learning 

and it is easy to apply these models into soft clustering. Predicting or estimating unaccomplished values 

is essential to make a weighted sum of centroids over all clusters. Currently, an unaccomplished value 

is estimated based on pre-knowledge of an existent pair of two objects (𝒳-object and 𝒴-object). As a 
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result, an estimate �̂� is fixed if the two objects are fixed. In future, we try to find out another method to 

take advantages of more than two existent objects with a set of values. Combination of dyadic mixture 

model and regression model is a candidate method but how to prove and explain it is still fuzzy problem. 
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